v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
? | 351 | 50 | 13 | 6 | 1190 | –4260 | |
300 | 255 | 264 | 3260 | –1290 | |||
! | 351 | 50 | 25 | 4 | 2326 | –2324 | Triangular graph T(27) |
300 | 253 | 276 | 1324 | –2426 | |||
? | 351 | 70 | 13 | 14 | 7182 | –8168 | |
280 | 223 | 224 | 7168 | –8182 | |||
? | 351 | 110 | 37 | 33 | 11130 | –7220 | |
240 | 162 | 168 | 6220 | –12130 | |||
? | 351 | 112 | 43 | 32 | 1678 | –5272 | |
238 | 157 | 170 | 4272 | –1778 | |||
+ | 351 | 126 | 45 | 45 | 9168 | –9182 | |
224 | 142 | 144 | 8182 | –10168 | NO–(7,3) | ||
? | 351 | 140 | 49 | 60 | 5260 | –1690 | |
210 | 129 | 120 | 1590 | –6260 | |||
? | 351 | 140 | 73 | 44 | 3226 | –3324 | |
210 | 113 | 144 | 2324 | –3326 | |||
- | 351 | 150 | 81 | 51 | 3325 | –3325 | Absolute bound |
200 | 100 | 132 | 2325 | –3425 | Absolute bound | ||
? | 351 | 160 | 64 | 80 | 4285 | –2065 | pg(8,19,4)?; 2-graph\*? |
190 | 109 | 95 | 1965 | –5285 | 2-graph\*? | ||
? | 352 | 26 | 0 | 2 | 4208 | –6143 | |
325 | 300 | 300 | 5143 | –5208 | |||
? | 352 | 36 | 0 | 4 | 4231 | –8120 | |
315 | 282 | 280 | 7120 | –5231 | |||
? | 352 | 39 | 6 | 4 | 7143 | –5208 | |
312 | 276 | 280 | 4208 | –8143 | |||
? | 352 | 108 | 44 | 28 | 2054 | –4297 | |
243 | 162 | 180 | 3297 | –2154 | |||
? | 352 | 117 | 36 | 40 | 7208 | –11143 | |
234 | 156 | 154 | 10143 | –8208 | |||
? | 352 | 126 | 50 | 42 | 1499 | –6252 | |
225 | 140 | 150 | 5252 | –1599 | pg(15,14,10)? | ||
- | 352 | 130 | 78 | 30 | 5011 | –2340 | Absolute bound |
221 | 120 | 170 | 1340 | –5111 | Absolute bound | ||
? | 352 | 156 | 60 | 76 | 4286 | –2065 | 2-graph? |
195 | 114 | 100 | 1965 | –5286 | 2-graph? | ||
? | 352 | 171 | 90 | 76 | 1966 | –5285 | 2-graph? |
180 | 84 | 100 | 4285 | –2066 | pg(9,19,5)?; 2-graph? | ||
+ | 353 | 176 | 87 | 88 | 8.894176 | –9.894176 | Paley(353); 2-graph\* |
+ | 357 | 100 | 35 | 25 | 1584 | –5272 | S(2,5,85); lines in PG(3,4); O+(6,4) |
256 | 180 | 192 | 4272 | –1684 | pg(16,15,12)? | ||
- | 357 | 178 | 88 | 89 | 8.947178 | –9.947178 | Conf |
! | 361 | 36 | 17 | 2 | 1736 | –2324 | 192 |
324 | 289 | 306 | 1324 | –1836 | OA(19,18) | ||
+ | 361 | 54 | 19 | 6 | 1654 | –3306 | OA(19,3) |
306 | 257 | 272 | 2306 | –1754 | OA(19,17) | ||
+ | 361 | 72 | 23 | 12 | 1572 | –4288 | OA(19,4) |
288 | 227 | 240 | 3288 | –1672 | OA(19,16) | ||
? | 361 | 80 | 9 | 20 | 4280 | –1580 | |
280 | 219 | 210 | 1480 | –5280 | |||
+ | 361 | 90 | 29 | 20 | 1490 | –5270 | OA(19,5) |
270 | 199 | 210 | 4270 | –1590 | OA(19,15) | ||
? | 361 | 100 | 21 | 30 | 5260 | –14100 | |
260 | 189 | 182 | 13100 | –6260 | |||
+ | 361 | 108 | 37 | 30 | 13108 | –6252 | OA(19,6) |
252 | 173 | 182 | 5252 | –14108 | OA(19,14) | ||
? | 361 | 120 | 35 | 42 | 6240 | –13120 | |
240 | 161 | 156 | 12120 | –7240 | |||
+ | 361 | 126 | 47 | 42 | 12126 | –7234 | OA(19,7) |
234 | 149 | 156 | 6234 | –13126 | OA(19,13) | ||
? | 361 | 140 | 51 | 56 | 7220 | –12140 | |
220 | 135 | 132 | 11140 | –8220 | |||
+ | 361 | 144 | 59 | 56 | 11144 | –8216 | OA(19,8) |
216 | 127 | 132 | 7216 | –12144 | OA(19,12) | ||
- | 361 | 150 | 93 | 40 | 5510 | –2350 | Absolute bound |
210 | 99 | 154 | 1350 | –5610 | Absolute bound | ||
? | 361 | 160 | 69 | 72 | 8200 | –11160 | |
200 | 111 | 110 | 10160 | –9200 | |||
+ | 361 | 162 | 73 | 72 | 10162 | –9198 | OA(19,9); Pasechnik(19) |
198 | 107 | 110 | 8198 | –11162 | OA(19,11) | ||
- | 361 | 168 | 95 | 63 | 3524 | –3336 | Absolute bound |
192 | 86 | 120 | 2336 | –3624 | Absolute bound | ||
+ | 361 | 180 | 89 | 90 | 9180 | –10180 | Paley(361); OA(19,10); 2-graph\* |
+ | 362 | 171 | 80 | 81 | 9181 | –10180 | switch OA(19,10)+*; switch skewhad2+*; 2-graph |
190 | 99 | 100 | 9180 | –10181 | S(2,10,181)?; 2-graph | ||
? | 363 | 170 | 73 | 85 | 5272 | –1790 | pg(10,16,5)?; 2-graph\*? |
192 | 106 | 96 | 1690 | –6272 | 2-graph\*? | ||
? | 364 | 33 | 2 | 3 | 5195 | –6168 | |
330 | 299 | 300 | 5168 | –6195 | |||
? | 364 | 66 | 20 | 10 | 1477 | –4286 | |
297 | 240 | 252 | 3286 | –1577 | |||
? | 364 | 88 | 12 | 24 | 4286 | –1677 | |
275 | 210 | 200 | 1577 | –5286 | |||
+ | 364 | 120 | 38 | 40 | 8195 | –10168 | O(7,3) Sp(6,3); pg(12,9,4)? |
243 | 162 | 162 | 9168 | –9195 | |||
? | 364 | 121 | 48 | 36 | 1777 | –5286 | |
242 | 156 | 170 | 4286 | –1877 | |||
? | 364 | 165 | 68 | 80 | 5273 | –1790 | 2-graph? |
198 | 112 | 102 | 1690 | –6273 | 2-graph? | ||
? | 364 | 176 | 90 | 80 | 1691 | –6272 | 2-graph? |
187 | 90 | 102 | 5272 | –1791 | 2-graph? | ||
? | 365 | 182 | 90 | 91 | 9.052182 | –10.052182 | 2-graph\*? |
? | 369 | 184 | 91 | 92 | 9.105184 | –10.105184 | 2-graph\*? |
+ | 371 | 120 | 44 | 36 | 14105 | –6265 | S(2,6,106) |
250 | 165 | 175 | 5265 | –15105 | |||
? | 372 | 56 | 10 | 8 | 8155 | –6216 | |
315 | 266 | 270 | 5216 | –9155 | |||
+ | 373 | 186 | 92 | 93 | 9.157186 | –10.157186 | Paley(373); 2-graph\* |
- | 375 | 22 | 5 | 1 | 7110 | –3264 | mu=1 |
352 | 330 | 336 | 2264 | –8110 | |||
? | 375 | 66 | 9 | 12 | 6220 | –9154 | |
308 | 253 | 252 | 8154 | –7220 | |||
? | 375 | 68 | 13 | 12 | 8170 | –7204 | |
306 | 249 | 252 | 6204 | –9170 | |||
? | 375 | 102 | 45 | 21 | 2734 | –3340 | |
272 | 190 | 216 | 2340 | –2834 | |||
? | 375 | 110 | 25 | 35 | 5275 | –1599 | |
264 | 188 | 180 | 1499 | –6275 | |||
? | 375 | 136 | 44 | 52 | 6255 | –14119 | |
238 | 153 | 147 | 13119 | –7255 | |||
? | 375 | 154 | 53 | 70 | 4308 | –2166 | |
220 | 135 | 120 | 2066 | –5308 | |||
? | 375 | 170 | 85 | 70 | 2068 | –5306 | |
204 | 103 | 120 | 4306 | –2168 | |||
? | 375 | 176 | 94 | 72 | 2644 | –4330 | |
198 | 93 | 117 | 3330 | –2744 | |||
? | 375 | 182 | 85 | 91 | 7234 | –13140 | pg(14,12,7)?; 2-graph\*? |
192 | 100 | 96 | 12140 | –8234 | 2-graph\*? | ||
? | 376 | 105 | 32 | 28 | 11140 | –7235 | |
270 | 192 | 198 | 6235 | –12140 | |||
? | 376 | 175 | 78 | 84 | 7235 | –13140 | 2-graph? |
200 | 108 | 104 | 12140 | –8235 | 2-graph? | ||
? | 376 | 180 | 88 | 84 | 12141 | –8234 | 2-graph? |
195 | 98 | 104 | 7234 | –13141 | 2-graph? | ||
? | 377 | 180 | 81 | 90 | 6260 | –15116 | pg(12,14,6)?; 2-graph\*? |
196 | 105 | 98 | 14116 | –7260 | 2-graph\*? | ||
? | 377 | 188 | 93 | 94 | 9.208188 | –10.208188 | 2-graph\*? |
+ | 378 | 52 | 1 | 8 | 4273 | –11104 | Cossidente-Penttila hemisystem in PG(3,52) |
325 | 280 | 275 | 10104 | –5273 | |||
! | 378 | 52 | 26 | 4 | 2427 | –2350 | Triangular graph T(28) |
325 | 276 | 300 | 1350 | –2527 | pg(13,24,12)? | ||
+ | 378 | 116 | 34 | 36 | 8203 | –10174 | Muzychuk S6 (n=3,d=3) |
261 | 180 | 180 | 9174 | –9203 | |||
+ | 378 | 117 | 36 | 36 | 9182 | –9195 | Wallis (AR(3,3)+S(2,2,14)); pg(13,8,4)? |
260 | 178 | 180 | 8195 | –10182 | NO+(7,3) | ||
? | 378 | 174 | 75 | 84 | 6261 | –15116 | 2-graph? |
203 | 112 | 105 | 14116 | –7261 | 2-graph? | ||
? | 378 | 182 | 91 | 84 | 14117 | –7260 | 2-graph? |
195 | 96 | 105 | 6260 | –15117 | pg(13,14,7)?; 2-graph? | ||
? | 381 | 114 | 29 | 36 | 6254 | –13126 | |
266 | 187 | 182 | 12126 | –7254 | |||
? | 381 | 140 | 55 | 49 | 13126 | –7254 | S(2,7,127)? |
240 | 148 | 156 | 6254 | –14126 | |||
- | 381 | 190 | 94 | 95 | 9.260190 | –10.260190 | Conf |
? | 385 | 60 | 5 | 10 | 5252 | –10132 | |
324 | 273 | 270 | 9132 | –6252 | |||
? | 385 | 168 | 77 | 70 | 14120 | –7264 | |
216 | 117 | 126 | 6264 | –15120 | |||
- | 385 | 192 | 95 | 96 | 9.311192 | –10.311192 | Conf |
+ | 389 | 194 | 96 | 97 | 9.362194 | –10.362194 | Paley(389); 2-graph\* |
? | 391 | 140 | 39 | 56 | 4322 | –2168 | |
250 | 165 | 150 | 2068 | –5322 | |||
? | 391 | 182 | 93 | 77 | 2168 | –5322 | |
208 | 102 | 120 | 4322 | –2268 | |||
? | 392 | 46 | 0 | 6 | 4276 | –10115 | |
345 | 304 | 300 | 9115 | –5276 | |||
? | 392 | 51 | 10 | 6 | 9136 | –5255 | |
340 | 294 | 300 | 4255 | –10136 | |||
+ | 392 | 69 | 26 | 9 | 2048 | –3343 | S(2,3,49) |
322 | 261 | 280 | 2343 | –2148 | |||
? | 392 | 115 | 18 | 40 | 3345 | –2546 | q222=0 |
276 | 200 | 180 | 2446 | –4345 | q111=0 | ||
? | 392 | 136 | 60 | 40 | 2451 | –4340 | |
255 | 158 | 180 | 3340 | –2551 | |||
? | 392 | 153 | 54 | 63 | 6272 | –15119 | |
238 | 147 | 140 | 14119 | –7272 | |||
- | 392 | 184 | 66 | 104 | 2368 | –4023 | Absolute bound |
207 | 126 | 90 | 3923 | –3368 | Absolute bound | ||
- | 393 | 196 | 97 | 98 | 9.412196 | –10.412196 | Conf |
? | 396 | 135 | 30 | 54 | 3351 | –2744 | pg(5,26,2)? |
260 | 178 | 156 | 2644 | –4351 | |||
? | 396 | 150 | 51 | 60 | 6275 | –15120 | pg(10,14,4)? |
245 | 154 | 147 | 14120 | –7275 | |||
+ | 397 | 198 | 98 | 99 | 9.462198 | –10.462198 | Paley(397); 2-graph\* |
+ | 399 | 198 | 97 | 99 | 9209 | –11189 | pg(18,10,9)?; 2-graph\* |
200 | 100 | 100 | 10189 | –10209 | S(2,10,190)?; 2-graph\* | ||
? | 400 | 21 | 2 | 1 | 5175 | –4224 | |
378 | 357 | 360 | 3224 | –6175 | |||
! | 400 | 38 | 18 | 2 | 1838 | –2361 | 202 |
361 | 324 | 342 | 1361 | –1938 | OA(20,19)? | ||
+ | 400 | 56 | 6 | 8 | 6224 | –8175 | O(5,7) Sp(4,7); GQ(7,7) |
343 | 294 | 294 | 7175 | –7224 | |||
+ | 400 | 57 | 20 | 6 | 1757 | –3342 | OA(20,3) |
342 | 290 | 306 | 2342 | –1857 | OA(20,18)? | ||
+ | 400 | 76 | 24 | 12 | 1676 | –4323 | OA(20,4) |
323 | 258 | 272 | 3323 | –1776 | OA(20,17)? | ||
? | 400 | 84 | 8 | 20 | 4315 | –1684 | |
315 | 250 | 240 | 1584 | –5315 | |||
+ | 400 | 95 | 30 | 20 | 1595 | –5304 | OA(20,5) |
304 | 228 | 240 | 4304 | –1695 | OA(20,16)? | ||
- | 400 | 102 | 2 | 34 | 2374 | –3425 | Krein2; Absolute bound |
297 | 228 | 198 | 3325 | –3374 | Krein1; Absolute bound | ||
? | 400 | 105 | 20 | 30 | 5294 | –15105 | pg(7,14,2)? |
294 | 218 | 210 | 14105 | –6294 | |||
- | 400 | 114 | 8 | 42 | 2375 | –3624 | Krein2; Absolute bound |
285 | 212 | 180 | 3524 | –3375 | Krein1; Absolute bound | ||
+ | 400 | 114 | 38 | 30 | 14114 | –6285 | OA(20,6) |
285 | 200 | 210 | 5285 | –15114 | OA(20,15)? | ||
? | 400 | 126 | 34 | 42 | 6273 | –14126 | pg(9,13,3)? |
273 | 188 | 182 | 13126 | –7273 | |||
? | 400 | 133 | 42 | 45 | 8224 | –11175 | |
266 | 177 | 176 | 10175 | –9224 | |||
? | 400 | 133 | 48 | 42 | 13133 | –7266 | OA(20,7)? |
266 | 174 | 182 | 6266 | –14133 | OA(20,14)? | ||
? | 400 | 147 | 50 | 56 | 7252 | –13147 | |
252 | 160 | 156 | 12147 | –8252 | |||
? | 400 | 152 | 60 | 56 | 12152 | –8247 | OA(20,8)? |
247 | 150 | 156 | 7247 | –13152 | OA(20,13)? | ||
? | 400 | 156 | 74 | 52 | 2648 | –4351 | |
243 | 138 | 162 | 3351 | –2748 | pg(9,26,6)? | ||
- | 400 | 161 | 24 | 92 | 1391 | –698 | Krein2; Absolute bound |
238 | 168 | 102 | 688 | –2391 | Krein1; Absolute bound | ||
? | 400 | 168 | 68 | 72 | 8231 | –12168 | pg(14,11,6)? |
231 | 134 | 132 | 11168 | –9231 | |||
? | 400 | 171 | 74 | 72 | 11171 | –9228 | OA(20,9)? |
228 | 128 | 132 | 8228 | –12171 | OA(20,12)? | ||
+ | 400 | 189 | 88 | 90 | 9210 | –11189 | RSHCD–; 2-graph |
210 | 110 | 110 | 10189 | –10210 | from 2-(20,2,1) with 1-factor Fickus et al.; 2-graph | ||
- | 400 | 189 | 108 | 72 | 3924 | –3375 | Absolute bound |
210 | 92 | 130 | 2375 | –4024 | Absolute bound | ||
+ | 400 | 190 | 90 | 90 | 10190 | –10209 | OA(20,10)?; Wallis (AR(2,5)+S(2,2,20)); RSHCD+; 2-graph |
209 | 108 | 110 | 9209 | –11190 | OA(20,11)?; Wallis2 (AR(2,5)+S(2,2,20)); Goethals-Seidel(2,19); 2-graph |