v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
+ | 401 | 200 | 99 | 100 | 9.512200 | –10.512200 | Paley(401); 2-graph\* |
- | 405 | 84 | 3 | 21 | 3350 | –2154 | Krein2 |
320 | 256 | 240 | 2054 | –4350 | Krein1 | ||
? | 405 | 96 | 18 | 24 | 6264 | –12140 | pg(8,11,2)? |
308 | 235 | 231 | 11140 | –7264 | |||
? | 405 | 132 | 63 | 33 | 3330 | –3374 | |
272 | 172 | 204 | 2374 | –3430 | pg(8,33,6)? | ||
? | 405 | 196 | 91 | 98 | 7260 | –14144 | pg(14,13,7)?; 2-graph\*? |
208 | 109 | 104 | 13144 | –8260 | 2-graph\*? | ||
? | 405 | 202 | 100 | 101 | 9.562202 | –10.562202 | 2-graph\*? |
! | 406 | 54 | 27 | 4 | 2528 | –2377 | Triangular graph T(29) |
351 | 300 | 325 | 1377 | –2628 | |||
? | 406 | 108 | 30 | 28 | 10174 | –8231 | |
297 | 216 | 220 | 7231 | –11174 | |||
? | 406 | 165 | 68 | 66 | 11174 | –9231 | |
240 | 140 | 144 | 8231 | –12174 | S(2,12,232)? | ||
? | 406 | 189 | 84 | 91 | 7261 | –14144 | 2-graph? |
216 | 117 | 112 | 13144 | –8261 | 2-graph? | ||
? | 406 | 195 | 96 | 91 | 13145 | –8260 | 2-graph? |
210 | 105 | 112 | 7260 | –14145 | 2-graph? | ||
+ | 407 | 126 | 45 | 36 | 15110 | –6296 | S(2,6,111) |
280 | 189 | 200 | 5296 | –16110 | |||
? | 408 | 110 | 28 | 30 | 8220 | –10187 | pg(11,9,3)? |
297 | 216 | 216 | 9187 | –9220 | |||
? | 408 | 176 | 70 | 80 | 6288 | –16119 | pg(11,15,5)? |
231 | 134 | 126 | 15119 | –7288 | |||
+ | 409 | 204 | 101 | 102 | 9.612204 | –10.612204 | Paley(409); 2-graph\* |
? | 411 | 130 | 45 | 39 | 13137 | –7273 | |
280 | 188 | 196 | 6273 | –14137 | S(2,14,274)? | ||
? | 413 | 112 | 36 | 28 | 14118 | –6294 | |
300 | 215 | 225 | 5294 | –15118 | S(2,15,295)? | ||
- | 413 | 206 | 102 | 103 | 9.661206 | –10.661206 | Conf |
? | 414 | 63 | 12 | 9 | 9161 | –6252 | |
350 | 295 | 300 | 5252 | –10161 | |||
- | 414 | 140 | 22 | 60 | 2390 | –4023 | Krein2; Absolute bound |
273 | 192 | 156 | 3923 | –3390 | Krein1; Absolute bound | ||
+ | 416 | 100 | 36 | 20 | 2065 | –4350 | G2(4).2 / J2.2; subconstituent of Suz graph |
315 | 234 | 252 | 3350 | –2165 | pg(15,20,12)? | ||
? | 416 | 165 | 64 | 66 | 9220 | –11195 | pg(15,10,6)? |
250 | 150 | 150 | 10195 | –10220 | |||
- | 417 | 208 | 103 | 104 | 9.710208 | –10.710208 | Conf |
? | 418 | 147 | 56 | 49 | 14132 | –7285 | S(2,7,133)? |
270 | 171 | 180 | 6285 | –15132 | pg(18,14,12)? | ||
+ | 421 | 210 | 104 | 105 | 9.759210 | –10.759210 | Paley(421); 2-graph\* |
? | 424 | 99 | 26 | 22 | 11159 | –7264 | |
324 | 246 | 252 | 6264 | –12159 | |||
+ | 425 | 72 | 27 | 9 | 2150 | –3374 | S(2,3,51) |
352 | 288 | 308 | 2374 | –2250 | pg(16,21,14)? | ||
? | 425 | 160 | 60 | 60 | 10204 | –10220 | pg(16,9,6)? |
264 | 163 | 165 | 9220 | –11204 | |||
? | 425 | 212 | 105 | 106 | 9.808212 | –10.808212 | 2-graph\*? |
? | 428 | 112 | 21 | 32 | 5320 | –16107 | pg(7,15,2)? |
315 | 234 | 225 | 15107 | –6320 | |||
? | 429 | 108 | 27 | 27 | 9208 | –9220 | pg(12,8,3)? |
320 | 238 | 240 | 8220 | –10208 | |||
- | 429 | 214 | 106 | 107 | 9.856214 | –10.856214 | Conf |
? | 430 | 39 | 8 | 3 | 9129 | –4300 | |
390 | 353 | 360 | 3300 | –10129 | |||
? | 430 | 135 | 36 | 45 | 6300 | –15129 | pg(9,14,3)? |
294 | 203 | 196 | 14129 | –7300 | |||
? | 430 | 165 | 68 | 60 | 15129 | –7300 | |
264 | 158 | 168 | 6300 | –16129 | |||
+ | 433 | 216 | 107 | 108 | 9.904216 | –10.904216 | Paley(433); 2-graph\* |
! | 435 | 56 | 28 | 4 | 2629 | –2405 | Triangular graph T(30) |
378 | 325 | 351 | 1405 | –2729 | pg(14,26,13)? | ||
? | 435 | 154 | 53 | 55 | 9231 | –11203 | pg(14,10,5)? |
280 | 180 | 180 | 10203 | –10231 | |||
? | 435 | 182 | 73 | 78 | 8260 | –13174 | pg(14,12,6)? |
252 | 147 | 144 | 12174 | –9260 | |||
? | 437 | 100 | 15 | 25 | 5322 | –15114 | |
336 | 260 | 252 | 14114 | –6322 | |||
- | 437 | 218 | 108 | 109 | 9.952218 | –10.952218 | Conf |
+ | 438 | 92 | 31 | 16 | 1972 | –4365 | S(2,4,73) |
345 | 268 | 285 | 3365 | –2072 | |||
! | 441 | 40 | 19 | 2 | 1940 | –2400 | 212 |
400 | 361 | 380 | 1400 | –2040 | OA(21,20)? | ||
+ | 441 | 56 | 7 | 7 | 7216 | –7224 | Wallis (AR(7,1)+S(2,2,9)); GQ(8,6) |
384 | 334 | 336 | 6224 | –8216 | |||
+ | 441 | 60 | 21 | 6 | 1860 | –3380 | OA(21,3) |
380 | 325 | 342 | 2380 | –1960 | OA(21,19)? | ||
+ | 441 | 80 | 25 | 12 | 1780 | –4360 | OA(21,4) |
360 | 291 | 306 | 3360 | –1880 | OA(21,18)? | ||
? | 441 | 88 | 7 | 20 | 4352 | –1788 | |
352 | 283 | 272 | 1688 | –5352 | |||
? | 441 | 88 | 35 | 13 | 2544 | –3396 | |
352 | 276 | 300 | 2396 | –2644 | |||
+ | 441 | 100 | 31 | 20 | 16100 | –5340 | OA(21,5) |
340 | 259 | 272 | 4340 | –17100 | OA(21,17)? | ||
? | 441 | 110 | 19 | 30 | 5330 | –16110 | |
330 | 249 | 240 | 15110 | –6330 | |||
- | 441 | 120 | 15 | 39 | 3392 | –2748 | Krein2 |
320 | 238 | 216 | 2648 | –4392 | Krein1 | ||
+ | 441 | 120 | 39 | 30 | 15120 | –6320 | OA(21,6) |
320 | 229 | 240 | 5320 | –16120 | OA(21,16)? | ||
- | 441 | 128 | 10 | 48 | 2416 | –4024 | Krein2; Absolute bound |
312 | 231 | 195 | 3924 | –3416 | Krein1; Absolute bound | ||
? | 441 | 132 | 33 | 42 | 6308 | –15132 | |
308 | 217 | 210 | 14132 | –7308 | |||
+ | 441 | 140 | 49 | 42 | 14140 | –7300 | OA(21,7) |
300 | 201 | 210 | 6300 | –15140 | OA(21,15)? | ||
? | 441 | 152 | 43 | 57 | 5342 | –1998 | pg(8,18,3)? |
288 | 192 | 180 | 1898 | –6342 | |||
? | 441 | 154 | 49 | 56 | 7286 | –14154 | |
286 | 187 | 182 | 13154 | –8286 | |||
? | 441 | 160 | 61 | 56 | 13160 | –8280 | OA(21,8)? |
280 | 175 | 182 | 7280 | –14160 | OA(21,14)? | ||
- | 441 | 176 | 25 | 100 | 1432 | –768 | Krein2; Absolute bound |
264 | 187 | 114 | 758 | –2432 | Krein1; Absolute bound | ||
? | 441 | 176 | 67 | 72 | 8264 | –13176 | |
264 | 159 | 156 | 12176 | –9264 | |||
? | 441 | 176 | 85 | 60 | 2948 | –4392 | |
264 | 147 | 174 | 3392 | –3048 | |||
? | 441 | 180 | 75 | 72 | 12180 | –9260 | OA(21,9)? |
260 | 151 | 156 | 8260 | –13180 | OA(21,13)? | ||
? | 441 | 184 | 87 | 69 | 2372 | –5368 | |
256 | 140 | 160 | 4368 | –2472 | |||
? | 441 | 190 | 89 | 76 | 1998 | –6342 | |
250 | 135 | 150 | 5342 | –2098 | |||
? | 441 | 198 | 87 | 90 | 9242 | –12198 | |
242 | 133 | 132 | 11198 | –10242 | |||
? | 441 | 200 | 91 | 90 | 11200 | –10240 | OA(21,10)? |
240 | 129 | 132 | 9240 | –12200 | OA(21,12)? | ||
? | 441 | 220 | 95 | 124 | 3396 | –3244 | |
220 | 123 | 96 | 3144 | –4396 | |||
+ | 441 | 220 | 109 | 110 | 10220 | –11220 | Mathon; OA(21,11)?; 2-graph\* |
- | 442 | 105 | 8 | 30 | 3390 | –2551 | Krein2 |
336 | 260 | 240 | 2451 | –4390 | Krein1 | ||
? | 442 | 210 | 99 | 100 | 10221 | –11220 | 2-graph? |
231 | 120 | 121 | 10220 | –11221 | S(2,11,221)?; 2-graph? | ||
? | 445 | 222 | 110 | 111 | 10.048222 | –11.048222 | 2-graph\*? |
? | 448 | 150 | 50 | 50 | 10216 | –10231 | pg(15,9,5)? |
297 | 196 | 198 | 9231 | –11216 | |||
? | 448 | 162 | 66 | 54 | 18105 | –6342 | |
285 | 176 | 190 | 5342 | –19105 | pg(15,18,10)? | ||
+ | 449 | 224 | 111 | 112 | 10.095224 | –11.095224 | Paley(449); 2-graph\* |