v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
+ | 301 | 60 | 23 | 9 | 1742 | –3258 | S(2,3,43) |
240 | 188 | 204 | 2258 | –1842 | |||
? | 301 | 108 | 27 | 45 | 3258 | –2142 | |
192 | 128 | 112 | 2042 | –4258 | |||
? | 301 | 150 | 65 | 84 | 3258 | –2242 | |
150 | 83 | 66 | 2142 | –4258 | |||
- | 301 | 150 | 74 | 75 | 8.175150 | –9.175150 | Conf |
+ | 304 | 108 | 42 | 36 | 1295 | –6208 | S(2,6,96) |
195 | 122 | 130 | 5208 | –1395 | pg(15,12,10)? | ||
+ | 305 | 76 | 27 | 16 | 1560 | –4244 | S(2,4,61) |
228 | 167 | 180 | 3244 | –1660 | |||
? | 305 | 152 | 75 | 76 | 8.232152 | –9.232152 | 2-graph\*? |
? | 306 | 55 | 4 | 11 | 4220 | –1185 | |
250 | 205 | 200 | 1085 | –5220 | |||
? | 306 | 60 | 10 | 12 | 6170 | –8135 | |
245 | 196 | 196 | 7135 | –7170 | |||
- | 309 | 154 | 76 | 77 | 8.289154 | –9.289154 | Conf |
+ | 313 | 156 | 77 | 78 | 8.346156 | –9.346156 | Paley(313); 2-graph\* |
+ | 317 | 158 | 78 | 79 | 8.402158 | –9.402158 | Paley(317); 2-graph\* |
? | 319 | 150 | 65 | 75 | 5231 | –1587 | pg(10,14,5)?; 2-graph\*? |
168 | 92 | 84 | 1487 | –6231 | 2-graph\*? | ||
? | 320 | 87 | 22 | 24 | 7174 | –9145 | |
232 | 168 | 168 | 8145 | –8174 | |||
? | 320 | 88 | 24 | 24 | 8154 | –8165 | |
231 | 166 | 168 | 7165 | –9154 | |||
? | 320 | 99 | 18 | 36 | 3275 | –2144 | |
220 | 156 | 140 | 2044 | –4275 | |||
? | 320 | 132 | 46 | 60 | 4255 | –1864 | |
187 | 114 | 102 | 1764 | –5255 | |||
? | 320 | 145 | 60 | 70 | 5232 | –1587 | 2-graph? |
174 | 98 | 90 | 1487 | –6232 | 2-graph? | ||
? | 320 | 154 | 78 | 70 | 1488 | –6231 | 2-graph? |
165 | 80 | 90 | 5231 | –1588 | pg(11,14,6)?; 2-graph? | ||
- | 321 | 160 | 79 | 80 | 8.458160 | –9.458160 | Conf |
? | 322 | 96 | 20 | 32 | 4252 | –1669 | pg(6,15,2)? |
225 | 160 | 150 | 1569 | –5252 | |||
+ | 323 | 160 | 78 | 80 | 8170 | –10152 | pg(16,9,8)?; 2-graph\* |
162 | 81 | 81 | 9152 | –9170 | S(2,9,153)?; 2-graph\* | ||
! | 324 | 34 | 16 | 2 | 1634 | –2289 | 182 |
289 | 256 | 272 | 1289 | –1734 | OA(18,17)? | ||
+ | 324 | 51 | 18 | 6 | 1551 | –3272 | OA(18,3) |
272 | 226 | 240 | 2272 | –1651 | OA(18,16)? | ||
- | 324 | 57 | 0 | 12 | 3266 | –1557 | Gavrilyuk & Makhnev and Kaski & Östergård |
266 | 220 | 210 | 1457 | –4266 | |||
? | 324 | 68 | 7 | 16 | 4243 | –1380 | |
255 | 202 | 195 | 1280 | –5243 | |||
+ | 324 | 68 | 22 | 12 | 1468 | –4255 | OA(18,4) |
255 | 198 | 210 | 3255 | –1568 | OA(18,15)? | ||
? | 324 | 76 | 10 | 20 | 4247 | –1476 | |
247 | 190 | 182 | 1376 | –5247 | |||
+ | 324 | 85 | 28 | 20 | 1385 | –5238 | OA(18,5) |
238 | 172 | 182 | 4238 | –1485 | OA(18,14)? | ||
? | 324 | 95 | 22 | 30 | 5228 | –1395 | |
228 | 162 | 156 | 1295 | –6228 | |||
+ | 324 | 95 | 34 | 25 | 1480 | –5243 | S(2,5,81) |
228 | 157 | 168 | 4243 | –1580 | |||
+ | 324 | 102 | 36 | 30 | 12102 | –6221 | OA(18,6) |
221 | 148 | 156 | 5221 | –13102 | OA(18,13)? | ||
? | 324 | 114 | 36 | 42 | 6209 | –12114 | |
209 | 136 | 132 | 11114 | –7209 | |||
+ | 324 | 119 | 46 | 42 | 11119 | –7204 | OA(18,7) |
204 | 126 | 132 | 6204 | –12119 | OA(18,12)? | ||
- | 324 | 133 | 22 | 77 | 1315 | –568 | Krein2; Absolute bound |
190 | 133 | 80 | 558 | –2315 | Krein1; Absolute bound | ||
? | 324 | 133 | 52 | 56 | 7190 | –11133 | |
190 | 112 | 110 | 10133 | –8190 | |||
? | 324 | 136 | 58 | 56 | 10136 | –8187 | OA(18,8)? |
187 | 106 | 110 | 7187 | –11136 | OA(18,11)? | ||
+ | 324 | 152 | 70 | 72 | 8171 | –10152 | RSHCD–; 2-graph |
171 | 90 | 90 | 9152 | –9171 | 2-graph | ||
+ | 324 | 153 | 72 | 72 | 9153 | –9170 | OA(18,9)?; RSHCD+; 2-graph |
170 | 88 | 90 | 8170 | –10153 | OA(18,10)?; 2-graph | ||
! | 325 | 48 | 24 | 4 | 2225 | –2299 | Triangular graph T(26) |
276 | 231 | 253 | 1299 | –2325 | pg(12,22,11)? | ||
? | 325 | 54 | 3 | 10 | 4234 | –1190 | |
270 | 225 | 220 | 1090 | –5234 | |||
+ | 325 | 60 | 15 | 10 | 10104 | –5220 | NO+,orth(5,5); Wallis (AR(5,1)+S(2,3,13)); pg(12,4,2)? |
264 | 213 | 220 | 4220 | –11104 | |||
+ | 325 | 68 | 3 | 17 | 3272 | –1752 | q222=0; O–(6,4) polar graph; GQ(4,16) |
256 | 204 | 192 | 1652 | –4272 | q111=0 | ||
? | 325 | 72 | 15 | 16 | 7168 | –8156 | pg(9,7,2)? |
252 | 195 | 196 | 7156 | –8168 | |||
- | 325 | 108 | 63 | 22 | 4312 | –2312 | Absolute bound |
216 | 129 | 172 | 1312 | –4412 | Absolute bound | ||
+ | 325 | 144 | 68 | 60 | 1490 | –6234 | NO+(5,5) |
180 | 95 | 105 | 5234 | –1590 | pg(12,14,7)? | ||
? | 325 | 162 | 80 | 81 | 8.514162 | –9.514162 | 2-graph\*? |
? | 329 | 40 | 3 | 5 | 5188 | –7140 | |
288 | 252 | 252 | 6140 | –6188 | |||
- | 329 | 164 | 81 | 82 | 8.569164 | –9.569164 | Conf |
+ | 330 | 63 | 24 | 9 | 1844 | –3285 | dist. 1 or 4 in J(11,4) - Mathon; S(2,3,45) |
266 | 211 | 228 | 2285 | –1944 | pg(14,18,12)? | ||
? | 330 | 105 | 40 | 30 | 1577 | –5252 | |
224 | 148 | 160 | 4252 | –1677 | pg(14,15,10)? | ||
? | 330 | 140 | 58 | 60 | 8175 | –10154 | pg(14,9,6)? |
189 | 108 | 108 | 9154 | –9175 | |||
? | 333 | 166 | 82 | 83 | 8.624166 | –9.624166 | 2-graph\*? |
+ | 336 | 80 | 28 | 16 | 1663 | –4272 | Jenrich; S(2,4,64); intersection-12 graph of a quasisymmetric 2-(64,24,46) design with intersection numbers 8, 12; Lines in AG(3,4) (rk 4); Wallis (AR(4,1)+S(2,5,21)) |
255 | 190 | 204 | 3272 | –1763 | pg(15,16,12)? | ||
? | 336 | 125 | 40 | 50 | 5245 | –1590 | |
210 | 134 | 126 | 1490 | –6245 | |||
? | 336 | 135 | 54 | 54 | 9160 | –9175 | pg(15,8,6)? |
200 | 118 | 120 | 8175 | –10160 | |||
+ | 337 | 168 | 83 | 84 | 8.679168 | –9.679168 | Paley(337); 2-graph\* |
? | 340 | 108 | 30 | 36 | 6220 | –12119 | pg(9,11,3)? |
231 | 158 | 154 | 11119 | –7220 | |||
? | 341 | 70 | 15 | 14 | 8154 | –7186 | pg(10,6,2)? |
270 | 213 | 216 | 6186 | –9154 | |||
? | 341 | 84 | 19 | 21 | 7186 | –9154 | |
256 | 192 | 192 | 8154 | –8186 | |||
? | 341 | 102 | 31 | 30 | 9154 | –8186 | |
238 | 165 | 168 | 7186 | –10154 | |||
- | 341 | 170 | 84 | 85 | 8.733170 | –9.733170 | Conf |
? | 342 | 33 | 4 | 3 | 6152 | –5189 | |
308 | 277 | 280 | 4189 | –7152 | |||
? | 342 | 66 | 15 | 12 | 9132 | –6209 | pg(11,5,2)? |
275 | 220 | 225 | 5209 | –10132 | |||
+ | 343 | 54 | 5 | 9 | 5216 | –9126 | Godsil(q=7,r=4); GQ(6,8) |
288 | 242 | 240 | 8126 | –6216 | |||
- | 343 | 96 | 54 | 16 | 4014 | –2328 | Absolute bound |
246 | 165 | 205 | 1328 | –4114 | Absolute bound | ||
? | 343 | 102 | 21 | 34 | 4272 | –1770 | pg(6,16,2)? |
240 | 171 | 160 | 1670 | –5272 | |||
? | 343 | 114 | 45 | 34 | 1676 | –5266 | |
228 | 147 | 160 | 4266 | –1776 | |||
+ | 343 | 150 | 53 | 75 | 3300 | –2542 | Godsil(q=7,r=2); pg(6,24,3)?; 2-graph\* |
192 | 116 | 96 | 2442 | –4300 | 2-graph\* | ||
? | 343 | 162 | 81 | 72 | 1590 | –6252 | |
180 | 89 | 100 | 5252 | –1690 | |||
? | 344 | 147 | 50 | 72 | 3301 | –2542 | 2-graph? |
196 | 120 | 100 | 2442 | –4301 | 2-graph? | ||
+ | 344 | 168 | 92 | 72 | 2443 | –4300 | 2-graph |
175 | 78 | 100 | 3300 | –2543 | pg(7,24,4)?; Taylor 2-graph for U3(7) | ||
? | 345 | 120 | 35 | 45 | 5252 | –1592 | pg(8,14,3)? |
224 | 148 | 140 | 1492 | –6252 | |||
? | 345 | 128 | 46 | 48 | 8184 | –10160 | |
216 | 135 | 135 | 9160 | –9184 | |||
- | 345 | 172 | 85 | 86 | 8.787172 | –9.787172 | Conf |
+ | 349 | 174 | 86 | 87 | 8.841174 | –9.841174 | Paley(349); 2-graph\* |