v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
! | 253 | 42 | 21 | 4 | 1922 | –2230 | Triangular graph T(23) |
210 | 171 | 190 | 1230 | –2022 | |||
- | 253 | 90 | 17 | 40 | 2230 | –2522 | Krein2 |
162 | 111 | 90 | 2422 | –3230 | Krein1 | ||
+ | 253 | 112 | 36 | 60 | 2230 | –2622 | S(4,7,23) - M23 |
140 | 87 | 65 | 2522 | –3230 | Witt 4-(23,7,1): intersection-3 graph of a quasisymmetric 2-(23,7,21) design with intersection numbers 1, 3 | ||
- | 253 | 126 | 62 | 63 | 7.453126 | –8.453126 | Conf |
+ | 255 | 126 | 61 | 63 | 7135 | –9119 | O(9,2) Sp(8,2); pg(14,8,7); 2-graph\* |
128 | 64 | 64 | 8119 | –8135 | S(2,8,120); 2-graph\* | ||
! | 256 | 30 | 14 | 2 | 1430 | –2225 | 162; from a partial spread: projective 4-ary [10,4] code with weights 4, 8; from a partial spread of 4-spaces: projective binary [30,8] code with weights 8, 16 |
225 | 196 | 210 | 1225 | –1530 | OA(16,15) | ||
+ | 256 | 45 | 16 | 6 | 1345 | –3210 | OA(16,3); Bilin2x4(2); Brouwer(q=4,d=2,e=2,+); from a partial spread: projective 4-ary [15,4] code with weights 8, 12; from a partial spread of 4-spaces: projective binary [45,8] code with weights 16, 24 |
210 | 170 | 182 | 2210 | –1445 | OA(16,14) | ||
+ | 256 | 51 | 2 | 12 | 3204 | –1351 | vanLint-Schrijver(1); VO–(4,4) affine polar graph; projective 4-ary [17,4] code with weights 12, 16 |
204 | 164 | 156 | 1251 | –4204 | vanLint-Schrijver(4) | ||
+ | 256 | 60 | 20 | 12 | 1260 | –4195 | Jenrich (rk 4); OA(16,4); Wallis (AR(4,1)+S(2,4,16)); from a partial spread: projective 4-ary [20,4] code with weights 12, 16; Brouwer(q=2,d=4,e=2,+); from a partial spread of 4-spaces: projective binary [60,8] code with weights 24, 32 |
195 | 146 | 156 | 3195 | –1360 | OA(16,13) | ||
- | 256 | 66 | 2 | 22 | 2231 | –2224 | Krein2 |
189 | 144 | 126 | 2124 | –3231 | Krein1 | ||
+ | 256 | 68 | 12 | 20 | 4187 | –1268 | Brouwer(q=2,d=4,e=2,-); projective binary [68,8] code with weights 32, 40 |
187 | 138 | 132 | 1168 | –5187 | |||
+ | 256 | 75 | 26 | 20 | 1175 | –5180 | OA(16,5); Bilin2x2(4); Wallis2 (AR(4,1)+S(2,4,16)); VO+(4,4) affine polar graph; from a partial spread: projective 4-ary [25,4] code with weights 16, 20; from a partial spread of 4-spaces: projective binary [75,8] code with weights 32, 40 |
180 | 124 | 132 | 4180 | –1275 | OA(16,12) | ||
+ | 256 | 85 | 24 | 30 | 5170 | –1185 | vanLint-Schrijver(1); CK - CY1: projective binary [85,8] code with weights 40, 48 |
170 | 114 | 110 | 1085 | –6170 | vanLint-Schrijver(2) | ||
+ | 256 | 90 | 34 | 30 | 1090 | –6165 | OA(16,6); from a partial spread: projective 4-ary [30,4] code with weights 20, 24; from a partial spread of 4-spaces: projective binary [90,8] code with weights 40, 48 |
165 | 104 | 110 | 5165 | –1190 | OA(16,11) | ||
+ | 256 | 102 | 38 | 42 | 6153 | –10102 | 28.L2(17) (rk 3) - Liebeck; vanLint-Schrijver(2); CK - CY1: projective 4-ary [34,4] code with weights 24, 28 |
153 | 92 | 90 | 9102 | –7153 | vanLint-Schrijver(3) | ||
+ | 256 | 105 | 44 | 42 | 9105 | –7150 | OA(16,7); from a partial spread: projective 4-ary [35,4] code with weights 24, 28; Brouwer(q=2,d=2,e=4,+); from a partial spread of 4-spaces: projective binary [105,8] code with weights 48, 56 |
150 | 86 | 90 | 6150 | –10105 | OA(16,10) | ||
+ | 256 | 119 | 54 | 56 | 7136 | –9119 | VO–(8,2) affine polar graph; projective binary [119,8] code with weights 56, 64; RSHCD–; 2-graph |
136 | 72 | 72 | 8119 | –8136 | from 2-(16,2,1) with 1-factor Fickus et al.; 2-graph | ||
+ | 256 | 120 | 56 | 56 | 8120 | –8135 | OA(16,8); Wallis (AR(2,4)+S(2,2,16)); from a partial spread: projective 4-ary [40,4] code with weights 28, 32; from a partial spread of 4-spaces: projective binary [120,8] code with weights 56, 64; RSHCD+; 2-graph |
135 | 70 | 72 | 7135 | –9120 | OA(16,9); Wallis2 (AR(2,4)+S(2,2,16)); Goethals-Seidel(2,15); VO+(8,2) affine polar graph; 2-graph | ||
+ | 257 | 128 | 63 | 64 | 7.516128 | –8.516128 | Paley(257); 2-graph\* |
? | 259 | 42 | 5 | 7 | 5147 | –7111 | |
216 | 180 | 180 | 6111 | –6147 | |||
? | 260 | 70 | 15 | 20 | 5168 | –1091 | pg(7,9,2)? |
189 | 138 | 135 | 991 | –6168 | |||
? | 261 | 52 | 11 | 10 | 7116 | –6144 | |
208 | 165 | 168 | 5144 | –8116 | |||
? | 261 | 64 | 14 | 16 | 6144 | –8116 | pg(8,7,2)? |
196 | 147 | 147 | 7116 | –7144 | |||
? | 261 | 80 | 25 | 24 | 8116 | –7144 | |
180 | 123 | 126 | 6144 | –9116 | |||
? | 261 | 84 | 39 | 21 | 2129 | –3231 | |
176 | 112 | 132 | 2231 | –2229 | pg(8,21,6)? | ||
? | 261 | 130 | 64 | 65 | 7.578130 | –8.578130 | 2-graph\*? |
? | 265 | 96 | 32 | 36 | 6159 | –10105 | |
168 | 107 | 105 | 9105 | –7159 | |||
? | 265 | 132 | 65 | 66 | 7.639132 | –8.639132 | 2-graph\*? |
? | 266 | 45 | 0 | 9 | 3209 | –1256 | |
220 | 183 | 176 | 1156 | –4209 | |||
+ | 269 | 134 | 66 | 67 | 7.701134 | –8.701134 | Paley(269); 2-graph\* |
? | 273 | 72 | 21 | 18 | 9104 | –6168 | pg(12,5,3)? |
200 | 145 | 150 | 5168 | –10104 | |||
? | 273 | 80 | 19 | 25 | 5182 | –1190 | |
192 | 136 | 132 | 1090 | –6182 | |||
+ | 273 | 102 | 41 | 36 | 1190 | –6182 | S(2,6,91) |
170 | 103 | 110 | 5182 | –1290 | |||
? | 273 | 136 | 65 | 70 | 6168 | –11104 | |
136 | 69 | 66 | 10104 | –7168 | |||
- | 273 | 136 | 67 | 68 | 7.761136 | –8.761136 | Conf |
! | 275 | 112 | 30 | 56 | 2252 | –2822 | q222=0; pg(4,27,2) does not exist by Soicher-Östergård; 2-graph\* |
162 | 105 | 81 | 2722 | –3252 | McLaughlin graph McL.2 / U4(3).2; unique by Goethals & Seidel; q111=0; 2-graph\* | ||
! | 276 | 44 | 22 | 4 | 2023 | –2252 | Triangular graph T(24) |
231 | 190 | 210 | 1252 | –2123 | pg(11,20,10)? | ||
? | 276 | 75 | 10 | 24 | 3230 | –1745 | |
200 | 148 | 136 | 1645 | –4230 | |||
? | 276 | 75 | 18 | 21 | 6160 | –9115 | |
200 | 145 | 144 | 8115 | –7160 | |||
- | 276 | 110 | 28 | 54 | 2253 | –2822 | Krein2; Absolute bound |
165 | 108 | 84 | 2722 | –3253 | Krein1; Absolute bound | ||
? | 276 | 110 | 52 | 38 | 1845 | –4230 | |
165 | 92 | 108 | 3230 | –1945 | |||
+ | 276 | 135 | 78 | 54 | 2723 | –3252 | Conway-Goethals&Seidel; 2-graph |
140 | 58 | 84 | 2252 | –2823 | pg(5,27,3)?; 2-graph | ||
+ | 277 | 138 | 68 | 69 | 7.822138 | –8.822138 | Paley(277); 2-graph\* |
+ | 279 | 128 | 52 | 64 | 4216 | –1662 | pg(8,15,4)?; 2-graph\* |
150 | 85 | 75 | 1562 | –5216 | 2-graph\* | ||
+ | 280 | 36 | 8 | 4 | 890 | –4189 | J2 / 3PGL2(9) (rk 4); U(4,3) polar graph; GQ(9,3) |
243 | 210 | 216 | 3189 | –990 | |||
? | 280 | 62 | 12 | 14 | 6155 | –8124 | |
217 | 168 | 168 | 7124 | –7155 | |||
? | 280 | 63 | 14 | 14 | 7135 | –7144 | pg(9,6,2)? |
216 | 166 | 168 | 6144 | –8135 | |||
+ | 280 | 117 | 44 | 52 | 5195 | –1384 | pg(9,12,4)? |
162 | 96 | 90 | 1284 | –6195 | Sym(9) (rk 5) - Mathon & Rosa | ||
? | 280 | 124 | 48 | 60 | 4217 | –1662 | 2-graph? |
155 | 90 | 80 | 1562 | –5217 | 2-graph? | ||
+ | 280 | 135 | 70 | 60 | 1563 | –5216 | J2 / 3PGL2(9) (rk 4); 2-graph |
144 | 68 | 80 | 4216 | –1663 | pg(9,15,5)?; 2-graph | ||
+ | 281 | 140 | 69 | 70 | 7.882140 | –8.882140 | Paley(281); 2-graph\* |
? | 285 | 64 | 8 | 16 | 4209 | –1275 | |
220 | 171 | 165 | 1175 | –5209 | |||
- | 285 | 142 | 70 | 71 | 7.941142 | –8.941142 | Conf |
? | 286 | 95 | 24 | 35 | 4220 | –1565 | |
190 | 129 | 120 | 1465 | –5220 | |||
? | 286 | 125 | 60 | 50 | 1565 | –5220 | |
160 | 84 | 96 | 4220 | –1665 | pg(10,15,6)? | ||
? | 287 | 126 | 45 | 63 | 3245 | –2141 | pg(6,20,3)?; 2-graph\*? |
160 | 96 | 80 | 2041 | –4245 | 2-graph\*? | ||
? | 288 | 41 | 4 | 6 | 5164 | –7123 | |
246 | 210 | 210 | 6123 | –6164 | |||
? | 288 | 42 | 6 | 6 | 6140 | –6147 | |
245 | 208 | 210 | 5147 | –7140 | |||
? | 288 | 105 | 52 | 30 | 2527 | –3260 | |
182 | 106 | 130 | 2260 | –2627 | pg(7,25,5)? | ||
? | 288 | 112 | 36 | 48 | 4224 | –1663 | pg(7,15,3)? |
175 | 110 | 100 | 1563 | –5224 | |||
? | 288 | 123 | 42 | 60 | 3246 | –2141 | 2-graph? |
164 | 100 | 84 | 2041 | –4246 | 2-graph? | ||
? | 288 | 140 | 76 | 60 | 2042 | –4245 | 2-graph? |
147 | 66 | 84 | 3245 | –2142 | pg(7,20,4)?; 2-graph? | ||
! | 289 | 32 | 15 | 2 | 1532 | –2256 | 172 |
256 | 225 | 240 | 1256 | –1632 | OA(17,16) | ||
+ | 289 | 48 | 17 | 6 | 1448 | –3240 | OA(17,3) |
240 | 197 | 210 | 2240 | –1548 | OA(17,15) | ||
- | 289 | 54 | 1 | 12 | 3234 | –1454 | Bondarenko-Radchenko |
234 | 191 | 182 | 1354 | –4234 | |||
+ | 289 | 64 | 21 | 12 | 1364 | –4224 | OA(17,4) |
224 | 171 | 182 | 3224 | –1464 | OA(17,14) | ||
? | 289 | 72 | 11 | 20 | 4216 | –1372 | |
216 | 163 | 156 | 1272 | –5216 | |||
+ | 289 | 80 | 27 | 20 | 1280 | –5208 | OA(17,5) |
208 | 147 | 156 | 4208 | –1380 | OA(17,13) | ||
? | 289 | 90 | 23 | 30 | 5198 | –1290 | |
198 | 137 | 132 | 1190 | –6198 | |||
+ | 289 | 96 | 35 | 30 | 1196 | –6192 | OA(17,6) |
192 | 125 | 132 | 5192 | –1296 | OA(17,12) | ||
? | 289 | 108 | 37 | 42 | 6180 | –11108 | |
180 | 113 | 110 | 10108 | –7180 | |||
+ | 289 | 112 | 45 | 42 | 10112 | –7176 | OA(17,7) |
176 | 105 | 110 | 6176 | –11112 | OA(17,11) | ||
- | 289 | 120 | 21 | 70 | 1280 | –508 | Krein2; Absolute bound |
168 | 117 | 70 | 498 | –2280 | Krein1; Absolute bound | ||
? | 289 | 126 | 53 | 56 | 7162 | –10126 | |
162 | 91 | 90 | 9126 | –8162 | |||
+ | 289 | 128 | 57 | 56 | 9128 | –8160 | OA(17,8) |
160 | 87 | 90 | 7160 | –10128 | OA(17,10) | ||
+ | 289 | 144 | 71 | 72 | 8144 | –9144 | Paley(289); OA(17,9); 2-graph\* |
+ | 290 | 136 | 63 | 64 | 8145 | –9144 | switch OA(17,9)+*; 2-graph |
153 | 80 | 81 | 8144 | –9145 | S(2,9,145)?; 2-graph | ||
+ | 293 | 146 | 72 | 73 | 8.059146 | –9.059146 | Paley(293); 2-graph\* |
+ | 297 | 40 | 7 | 5 | 7120 | –5176 | dual polar graph of lines in U5(2); GQ(8,4) |
256 | 220 | 224 | 4176 | –8120 | |||
? | 297 | 104 | 31 | 39 | 5208 | –1388 | pg(8,12,3)? |
192 | 126 | 120 | 1288 | –6208 | |||
? | 297 | 128 | 64 | 48 | 2044 | –4252 | |
168 | 87 | 105 | 3252 | –2144 | pg(8,20,5)? | ||
- | 297 | 148 | 73 | 74 | 8.117148 | –9.117148 | Conf |
? | 300 | 26 | 4 | 2 | 6117 | –4182 | |
273 | 248 | 252 | 3182 | –7117 | |||
! | 300 | 46 | 23 | 4 | 2124 | –2275 | Triangular graph T(25) |
253 | 210 | 231 | 1275 | –2224 | |||
+ | 300 | 65 | 10 | 15 | 5195 | –10104 | NO–,orth(5,5) |
234 | 183 | 180 | 9104 | –6195 | |||
? | 300 | 69 | 18 | 15 | 9115 | –6184 | |
230 | 175 | 180 | 5184 | –10115 | |||
- | 300 | 92 | 10 | 36 | 2276 | –2823 | Krein2; Absolute bound |
207 | 150 | 126 | 2723 | –3276 | Krein1; Absolute bound | ||
+ | 300 | 104 | 28 | 40 | 4234 | –1665 | NO–(5,5) |
195 | 130 | 120 | 1565 | –5234 | |||
? | 300 | 115 | 50 | 40 | 1569 | –5230 | |
184 | 108 | 120 | 4230 | –1669 | |||
? | 300 | 117 | 60 | 36 | 2726 | –3273 | |
182 | 100 | 126 | 2273 | –2826 |