| | v | k | λ | μ |
rf | sg | comments |
| ! | 253 | 42 | 21 | 4 | 1922 | –2230 |
Triangular graph T(23) |
| | | 210 | 171 | 190 | 1230 | –2022 |
|
| - | 253 | 90 | 17 | 40 | 2230 | –2522 |
Krein2 |
| | | 162 | 111 | 90 | 2422 | –3230 |
Krein1 |
| + | 253 | 112 | 36 | 60 | 2230 | –2622 |
S(4,7,23) - M23 |
| | | 140 | 87 | 65 | 2522 | –3230 |
Witt 4-(23,7,1): intersection-3 graph of a quasisymmetric 2-(23,7,21) design with intersection numbers 1, 3 |
| - | 253 | 126 | 62 | 63 | 7.453126 | –8.453126 |
Conf |
| + | 255 | 126 | 61 | 63 | 7135 | –9119 |
O(9,2) Sp(8,2); pg(14,8,7); 2-graph\* |
| | | 128 | 64 | 64 | 8119 | –8135 |
S(2,8,120); 2-graph\* |
| ! | 256 | 30 | 14 | 2 | 1430 | –2225 |
162; from a partial spread: projective 4-ary [10,4] code with weights 4, 8; from a partial spread of 4-spaces: projective binary [30,8] code with weights 8, 16 |
| | | 225 | 196 | 210 | 1225 | –1530 |
OA(16,15) |
| + | 256 | 45 | 16 | 6 | 1345 | –3210 |
OA(16,3); Bilin2x4(2); Brouwer(q=4,d=2,e=2,+); from a partial spread: projective 4-ary [15,4] code with weights 8, 12; from a partial spread of 4-spaces: projective binary [45,8] code with weights 16, 24 |
| | | 210 | 170 | 182 | 2210 | –1445 |
OA(16,14) |
| + | 256 | 51 | 2 | 12 | 3204 | –1351 |
vanLint-Schrijver(1); VO–(4,4) affine polar graph; projective 4-ary [17,4] code with weights 12, 16 |
| | | 204 | 164 | 156 | 1251 | –4204 |
vanLint-Schrijver(4) |
| + | 256 | 60 | 20 | 12 | 1260 | –4195 |
Jenrich (rk 4); OA(16,4); Wallis (AR(4,1)+S(2,4,16)); from a partial spread: projective 4-ary [20,4] code with weights 12, 16; Brouwer(q=2,d=4,e=2,+); from a partial spread of 4-spaces: projective binary [60,8] code with weights 24, 32 |
| | | 195 | 146 | 156 | 3195 | –1360 |
OA(16,13) |
| - | 256 | 66 | 2 | 22 | 2231 | –2224 |
Krein2 |
| | | 189 | 144 | 126 | 2124 | –3231 |
Krein1 |
| + | 256 | 68 | 12 | 20 | 4187 | –1268 |
Brouwer(q=2,d=4,e=2,-); projective binary [68,8] code with weights 32, 40 |
| | | 187 | 138 | 132 | 1168 | –5187 |
|
| + | 256 | 75 | 26 | 20 | 1175 | –5180 |
OA(16,5); Bilin2x2(4); Wallis2 (AR(4,1)+S(2,4,16)); VO+(4,4) affine polar graph; from a partial spread: projective 4-ary [25,4] code with weights 16, 20; from a partial spread of 4-spaces: projective binary [75,8] code with weights 32, 40 |
| | | 180 | 124 | 132 | 4180 | –1275 |
OA(16,12) |
| + | 256 | 85 | 24 | 30 | 5170 | –1185 |
vanLint-Schrijver(1); CK - CY1: projective binary [85,8] code with weights 40, 48 |
| | | 170 | 114 | 110 | 1085 | –6170 |
vanLint-Schrijver(2) |
| + | 256 | 90 | 34 | 30 | 1090 | –6165 |
OA(16,6); from a partial spread: projective 4-ary [30,4] code with weights 20, 24; from a partial spread of 4-spaces: projective binary [90,8] code with weights 40, 48 |
| | | 165 | 104 | 110 | 5165 | –1190 |
OA(16,11) |
| + | 256 | 102 | 38 | 42 | 6153 | –10102 |
28.L2(17) (rk 3) - Liebeck; vanLint-Schrijver(2); CK - CY1: projective 4-ary [34,4] code with weights 24, 28 |
| | | 153 | 92 | 90 | 9102 | –7153 |
vanLint-Schrijver(3) |
| + | 256 | 105 | 44 | 42 | 9105 | –7150 |
OA(16,7); from a partial spread: projective 4-ary [35,4] code with weights 24, 28; Brouwer(q=2,d=2,e=4,+); from a partial spread of 4-spaces: projective binary [105,8] code with weights 48, 56 |
| | | 150 | 86 | 90 | 6150 | –10105 |
OA(16,10) |
| + | 256 | 119 | 54 | 56 | 7136 | –9119 |
VO–(8,2) affine polar graph; projective binary [119,8] code with weights 56, 64; RSHCD–; 2-graph |
| | | 136 | 72 | 72 | 8119 | –8136 |
from 2-(16,2,1) with 1-factor Fickus et al.; 2-graph |
| + | 256 | 120 | 56 | 56 | 8120 | –8135 |
OA(16,8); Wallis (AR(2,4)+S(2,2,16)); from a partial spread: projective 4-ary [40,4] code with weights 28, 32; from a partial spread of 4-spaces: projective binary [120,8] code with weights 56, 64; RSHCD+; 2-graph |
| | | 135 | 70 | 72 | 7135 | –9120 |
OA(16,9); Wallis2 (AR(2,4)+S(2,2,16)); Goethals-Seidel(2,15); VO+(8,2) affine polar graph; 2-graph |
| + | 257 | 128 | 63 | 64 | 7.516128 | –8.516128 |
Paley(257); 2-graph\* |
| ? | 259 | 42 | 5 | 7 | 5147 | –7111 |
|
| | | 216 | 180 | 180 | 6111 | –6147 |
|
| ? | 260 | 70 | 15 | 20 | 5168 | –1091 |
pg(7,9,2)? |
| | | 189 | 138 | 135 | 991 | –6168 |
|
| ? | 261 | 52 | 11 | 10 | 7116 | –6144 |
|
| | | 208 | 165 | 168 | 5144 | –8116 |
|
| ? | 261 | 64 | 14 | 16 | 6144 | –8116 |
pg(8,7,2)? |
| | | 196 | 147 | 147 | 7116 | –7144 |
|
| ? | 261 | 80 | 25 | 24 | 8116 | –7144 |
|
| | | 180 | 123 | 126 | 6144 | –9116 |
|
| ? | 261 | 84 | 39 | 21 | 2129 | –3231 |
|
| | | 176 | 112 | 132 | 2231 | –2229 |
pg(8,21,6)? |
| ? | 261 | 130 | 64 | 65 | 7.578130 | –8.578130 |
2-graph\*? |
| ? | 265 | 96 | 32 | 36 | 6159 | –10105 |
|
| | | 168 | 107 | 105 | 9105 | –7159 |
|
| ? | 265 | 132 | 65 | 66 | 7.639132 | –8.639132 |
2-graph\*? |
| ? | 266 | 45 | 0 | 9 | 3209 | –1256 |
|
| | | 220 | 183 | 176 | 1156 | –4209 |
|
| + | 269 | 134 | 66 | 67 | 7.701134 | –8.701134 |
Paley(269); 2-graph\* |
| ? | 273 | 72 | 21 | 18 | 9104 | –6168 |
pg(12,5,3)? |
| | | 200 | 145 | 150 | 5168 | –10104 |
|
| ? | 273 | 80 | 19 | 25 | 5182 | –1190 |
|
| | | 192 | 136 | 132 | 1090 | –6182 |
|
| + | 273 | 102 | 41 | 36 | 1190 | –6182 |
S(2,6,91) |
| | | 170 | 103 | 110 | 5182 | –1290 |
|
| ? | 273 | 136 | 65 | 70 | 6168 | –11104 |
|
| | | 136 | 69 | 66 | 10104 | –7168 |
|
| - | 273 | 136 | 67 | 68 | 7.761136 | –8.761136 |
Conf |
| ! | 275 | 112 | 30 | 56 | 2252 | –2822 |
q222=0; pg(4,27,2) does not exist by Soicher-Östergård; 2-graph\* |
| | | 162 | 105 | 81 | 2722 | –3252 |
McLaughlin graph McL.2 / U4(3).2; unique by Goethals & Seidel; q111=0; 2-graph\* |
| ! | 276 | 44 | 22 | 4 | 2023 | –2252 |
Triangular graph T(24) |
| | | 231 | 190 | 210 | 1252 | –2123 |
pg(11,20,10)? |
| ? | 276 | 75 | 10 | 24 | 3230 | –1745 |
|
| | | 200 | 148 | 136 | 1645 | –4230 |
|
| ? | 276 | 75 | 18 | 21 | 6160 | –9115 |
|
| | | 200 | 145 | 144 | 8115 | –7160 |
|
| - | 276 | 110 | 28 | 54 | 2253 | –2822 |
Krein2; Absolute bound |
| | | 165 | 108 | 84 | 2722 | –3253 |
Krein1; Absolute bound |
| ? | 276 | 110 | 52 | 38 | 1845 | –4230 |
|
| | | 165 | 92 | 108 | 3230 | –1945 |
|
| + | 276 | 135 | 78 | 54 | 2723 | –3252 |
Conway-Goethals&Seidel; 2-graph |
| | | 140 | 58 | 84 | 2252 | –2823 |
pg(5,27,3)?; 2-graph |
| + | 277 | 138 | 68 | 69 | 7.822138 | –8.822138 |
Paley(277); 2-graph\* |
| + | 279 | 128 | 52 | 64 | 4216 | –1662 |
pg(8,15,4)?; 2-graph\* |
| | | 150 | 85 | 75 | 1562 | –5216 |
2-graph\* |
| + | 280 | 36 | 8 | 4 | 890 | –4189 |
J2 / 3PGL2(9) (rk 4); U(4,3) polar graph; GQ(9,3) |
| | | 243 | 210 | 216 | 3189 | –990 |
|
| ? | 280 | 62 | 12 | 14 | 6155 | –8124 |
|
| | | 217 | 168 | 168 | 7124 | –7155 |
|
| ? | 280 | 63 | 14 | 14 | 7135 | –7144 |
pg(9,6,2)? |
| | | 216 | 166 | 168 | 6144 | –8135 |
|
| + | 280 | 117 | 44 | 52 | 5195 | –1384 |
pg(9,12,4)? |
| | | 162 | 96 | 90 | 1284 | –6195 |
Sym(9) (rk 5) - Mathon & Rosa |
| ? | 280 | 124 | 48 | 60 | 4217 | –1662 |
2-graph? |
| | | 155 | 90 | 80 | 1562 | –5217 |
2-graph? |
| + | 280 | 135 | 70 | 60 | 1563 | –5216 |
J2 / 3PGL2(9) (rk 4); 2-graph |
| | | 144 | 68 | 80 | 4216 | –1663 |
pg(9,15,5)?; 2-graph |
| + | 281 | 140 | 69 | 70 | 7.882140 | –8.882140 |
Paley(281); 2-graph\* |
| ? | 285 | 64 | 8 | 16 | 4209 | –1275 |
|
| | | 220 | 171 | 165 | 1175 | –5209 |
|
| - | 285 | 142 | 70 | 71 | 7.941142 | –8.941142 |
Conf |
| ? | 286 | 95 | 24 | 35 | 4220 | –1565 |
|
| | | 190 | 129 | 120 | 1465 | –5220 |
|
| ? | 286 | 125 | 60 | 50 | 1565 | –5220 |
|
| | | 160 | 84 | 96 | 4220 | –1665 |
pg(10,15,6)? |
| ? | 287 | 126 | 45 | 63 | 3245 | –2141 |
pg(6,20,3)?; 2-graph\*? |
| | | 160 | 96 | 80 | 2041 | –4245 |
2-graph\*? |
| ? | 288 | 41 | 4 | 6 | 5164 | –7123 |
|
| | | 246 | 210 | 210 | 6123 | –6164 |
|
| ? | 288 | 42 | 6 | 6 | 6140 | –6147 |
|
| | | 245 | 208 | 210 | 5147 | –7140 |
|
| ? | 288 | 105 | 52 | 30 | 2527 | –3260 |
|
| | | 182 | 106 | 130 | 2260 | –2627 |
pg(7,25,5)? |
| ? | 288 | 112 | 36 | 48 | 4224 | –1663 |
pg(7,15,3)? |
| | | 175 | 110 | 100 | 1563 | –5224 |
|
| ? | 288 | 123 | 42 | 60 | 3246 | –2141 |
2-graph? |
| | | 164 | 100 | 84 | 2041 | –4246 |
2-graph? |
| ? | 288 | 140 | 76 | 60 | 2042 | –4245 |
2-graph? |
| | | 147 | 66 | 84 | 3245 | –2142 |
pg(7,20,4)?; 2-graph? |
| ! | 289 | 32 | 15 | 2 | 1532 | –2256 |
172 |
| | | 256 | 225 | 240 | 1256 | –1632 |
OA(17,16) |
| + | 289 | 48 | 17 | 6 | 1448 | –3240 |
OA(17,3) |
| | | 240 | 197 | 210 | 2240 | –1548 |
OA(17,15) |
| - | 289 | 54 | 1 | 12 | 3234 | –1454 |
Bondarenko-Radchenko |
| | | 234 | 191 | 182 | 1354 | –4234 |
|
| + | 289 | 64 | 21 | 12 | 1364 | –4224 |
OA(17,4) |
| | | 224 | 171 | 182 | 3224 | –1464 |
OA(17,14) |
| ? | 289 | 72 | 11 | 20 | 4216 | –1372 |
|
| | | 216 | 163 | 156 | 1272 | –5216 |
|
| + | 289 | 80 | 27 | 20 | 1280 | –5208 |
OA(17,5) |
| | | 208 | 147 | 156 | 4208 | –1380 |
OA(17,13) |
| ? | 289 | 90 | 23 | 30 | 5198 | –1290 |
|
| | | 198 | 137 | 132 | 1190 | –6198 |
|
| + | 289 | 96 | 35 | 30 | 1196 | –6192 |
OA(17,6); vanLint-Schrijver(1) |
| | | 192 | 125 | 132 | 5192 | –1296 |
OA(17,12); vanLint-Schrijver(2) |
| ? | 289 | 108 | 37 | 42 | 6180 | –11108 |
|
| | | 180 | 113 | 110 | 10108 | –7180 |
|
| + | 289 | 112 | 45 | 42 | 10112 | –7176 |
OA(17,7) |
| | | 176 | 105 | 110 | 6176 | –11112 |
OA(17,11) |
| - | 289 | 120 | 21 | 70 | 1280 | –508 |
Krein2; Absolute bound |
| | | 168 | 117 | 70 | 498 | –2280 |
Krein1; Absolute bound |
| ? | 289 | 126 | 53 | 56 | 7162 | –10126 |
|
| | | 162 | 91 | 90 | 9126 | –8162 |
|
| + | 289 | 128 | 57 | 56 | 9128 | –8160 |
OA(17,8) |
| | | 160 | 87 | 90 | 7160 | –10128 |
OA(17,10) |
| + | 289 | 144 | 71 | 72 | 8144 | –9144 |
Paley(289); OA(17,9); 2-graph\* |
| + | 290 | 136 | 63 | 64 | 8145 | –9144 |
switch OA(17,9)+*; 2-graph |
| | | 153 | 80 | 81 | 8144 | –9145 |
S(2,9,145)?; 2-graph |
| + | 293 | 146 | 72 | 73 | 8.059146 | –9.059146 |
Paley(293); 2-graph\* |
| + | 297 | 40 | 7 | 5 | 7120 | –5176 |
dual polar graph of lines in U5(2); GQ(8,4) |
| | | 256 | 220 | 224 | 4176 | –8120 |
|
| ? | 297 | 104 | 31 | 39 | 5208 | –1388 |
pg(8,12,3)? |
| | | 192 | 126 | 120 | 1288 | –6208 |
|
| ? | 297 | 128 | 64 | 48 | 2044 | –4252 |
|
| | | 168 | 87 | 105 | 3252 | –2144 |
pg(8,20,5)? |
| - | 297 | 148 | 73 | 74 | 8.117148 | –9.117148 |
Conf |
| ? | 300 | 26 | 4 | 2 | 6117 | –4182 |
|
| | | 273 | 248 | 252 | 3182 | –7117 |
|
| ! | 300 | 46 | 23 | 4 | 2124 | –2275 |
Triangular graph T(25) |
| | | 253 | 210 | 231 | 1275 | –2224 |
|
| + | 300 | 65 | 10 | 15 | 5195 | –10104 |
NO–,orth(5,5) |
| | | 234 | 183 | 180 | 9104 | –6195 |
|
| ? | 300 | 69 | 18 | 15 | 9115 | –6184 |
|
| | | 230 | 175 | 180 | 5184 | –10115 |
|
| - | 300 | 92 | 10 | 36 | 2276 | –2823 |
Krein2; Absolute bound |
| | | 207 | 150 | 126 | 2723 | –3276 |
Krein1; Absolute bound |
| + | 300 | 104 | 28 | 40 | 4234 | –1665 |
NO–(5,5) |
| | | 195 | 130 | 120 | 1565 | –5234 |
|
| ? | 300 | 115 | 50 | 40 | 1569 | –5230 |
|
| | | 184 | 108 | 120 | 4230 | –1669 |
|
| ? | 300 | 117 | 60 | 36 | 2726 | –3273 |
|
| | | 182 | 100 | 126 | 2273 | –2826 |
|