v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
- | 201 | 100 | 49 | 50 | 6.589100 | –7.589100 | Conf |
? | 204 | 28 | 2 | 4 | 4119 | –684 | |
175 | 150 | 150 | 584 | –5119 | |||
? | 204 | 63 | 22 | 18 | 968 | –5135 | |
140 | 94 | 100 | 4135 | –1068 | S(2,10,136)? | ||
? | 205 | 68 | 15 | 26 | 3164 | –1440 | |
136 | 93 | 84 | 1340 | –4164 | |||
? | 205 | 96 | 50 | 40 | 1440 | –4164 | |
108 | 51 | 63 | 3164 | –1540 | |||
? | 205 | 102 | 50 | 51 | 6.659102 | –7.659102 | 2-graph\*? |
? | 208 | 45 | 8 | 10 | 5117 | –790 | |
162 | 126 | 126 | 690 | –6117 | |||
+ | 208 | 75 | 30 | 25 | 1064 | –5143 | S(2,5,65); NU(3,4) |
132 | 81 | 88 | 4143 | –1164 | pg(12,10,8)? | ||
? | 208 | 81 | 24 | 36 | 3168 | –1539 | |
126 | 80 | 70 | 1439 | –4168 | |||
- | 209 | 16 | 3 | 1 | 576 | –3132 | mu=1 |
192 | 176 | 180 | 2132 | –676 | |||
? | 209 | 52 | 15 | 12 | 876 | –5132 | |
156 | 115 | 120 | 4132 | –976 | |||
+ | 209 | 100 | 45 | 50 | 5132 | –1076 | pg(10,9,5)?; 2-graph\* |
108 | 57 | 54 | 976 | –6132 | 2-graph\* | ||
- | 209 | 104 | 51 | 52 | 6.728104 | –7.728104 | Conf |
? | 210 | 33 | 0 | 6 | 3154 | –955 | |
176 | 148 | 144 | 855 | –4154 | |||
! | 210 | 38 | 19 | 4 | 1720 | –2189 | Triangular graph T(21) |
171 | 136 | 153 | 1189 | –1820 | |||
? | 210 | 76 | 26 | 28 | 6114 | –895 | |
133 | 84 | 84 | 795 | –7114 | |||
? | 210 | 77 | 28 | 28 | 799 | –7110 | |
132 | 82 | 84 | 6110 | –899 | |||
? | 210 | 95 | 40 | 45 | 5133 | –1076 | 2-graph? |
114 | 63 | 60 | 976 | –6133 | 2-graph? | ||
+ | 210 | 99 | 48 | 45 | 977 | –6132 | Sym(7) - Klin, cf. Klin_et_al; 2-graph |
110 | 55 | 60 | 5132 | –1077 | pg(11,9,6)?; 2-graph | ||
- | 213 | 106 | 52 | 53 | 6.797106 | –7.797106 | Conf |
+ | 216 | 40 | 4 | 8 | 4140 | –875 | O−(6,2) Crnkovic_et_al |
175 | 142 | 140 | 775 | –5140 | |||
? | 216 | 43 | 10 | 8 | 786 | –5129 | |
172 | 136 | 140 | 4129 | –886 | |||
- | 216 | 70 | 40 | 14 | 2812 | –2203 | Absolute bound |
145 | 88 | 116 | 1203 | –2912 | Absolute bound | ||
? | 216 | 75 | 18 | 30 | 3175 | –1540 | pg(5,14,2)? |
140 | 94 | 84 | 1440 | –4175 | |||
? | 216 | 86 | 40 | 30 | 1443 | –4172 | |
129 | 72 | 84 | 3172 | –1543 | |||
? | 216 | 90 | 39 | 36 | 980 | –6135 | S(2,6,81)? |
125 | 70 | 75 | 5135 | –1080 | |||
? | 217 | 66 | 15 | 22 | 4154 | –1162 | pg(6,10,2)? |
150 | 105 | 100 | 1062 | –5154 | |||
? | 217 | 88 | 39 | 33 | 1162 | –5154 | |
128 | 72 | 80 | 4154 | –1262 | |||
- | 217 | 108 | 53 | 54 | 6.865108 | –7.865108 | Conf |
? | 220 | 72 | 22 | 24 | 6120 | –899 | pg(9,7,3)? |
147 | 98 | 98 | 799 | –7120 | |||
+ | 220 | 84 | 38 | 28 | 1444 | –4175 | Tonchev: intersection-3 graph of a quasisymmetric 2-(45,9,8) design with intersection numbers 1, 3 |
135 | 78 | 90 | 3175 | –1544 | pg(9,14,6)? | ||
+ | 221 | 64 | 24 | 16 | 1251 | –4169 | S(2,4,52) |
156 | 107 | 117 | 3169 | –1351 | pg(12,12,9) | ||
? | 221 | 110 | 54 | 55 | 6.933110 | –7.933110 | 2-graph\*? |
+ | 222 | 51 | 20 | 9 | 1436 | –3185 | S(2,3,37) |
170 | 127 | 140 | 2185 | –1536 | |||
! | 225 | 28 | 13 | 2 | 1328 | –2196 | 152 |
196 | 169 | 182 | 1196 | –1428 | OA(15,14)? | ||
+ | 225 | 42 | 15 | 6 | 1242 | –3182 | OA(15,3) |
182 | 145 | 156 | 2182 | –1342 | OA(15,13)? | ||
? | 225 | 48 | 3 | 12 | 3176 | –1248 | |
176 | 139 | 132 | 1148 | –4176 | |||
- | 225 | 56 | 1 | 18 | 2200 | –1924 | Krein2 |
168 | 129 | 114 | 1824 | –3200 | Krein1 | ||
+ | 225 | 56 | 19 | 12 | 1156 | –4168 | OA(15,4) |
168 | 123 | 132 | 3168 | –1256 | OA(15,12)? | ||
? | 225 | 64 | 13 | 20 | 4160 | –1164 | |
160 | 115 | 110 | 1064 | –5160 | |||
+ | 225 | 70 | 25 | 20 | 1070 | –5154 | OA(15,5) |
154 | 103 | 110 | 4154 | –1170 | OA(15,11)? | ||
? | 225 | 80 | 25 | 30 | 5144 | –1080 | pg(8,9,3)? |
144 | 93 | 90 | 980 | –6144 | |||
+ | 225 | 84 | 33 | 30 | 984 | –6140 | OA(15,6) |
140 | 85 | 90 | 5140 | –1084 | OA(15,10)? | ||
- | 225 | 96 | 19 | 57 | 1216 | –398 | Krein2; Absolute bound |
128 | 88 | 52 | 388 | –2216 | Krein1; Absolute bound | ||
? | 225 | 96 | 39 | 42 | 6128 | –996 | |
128 | 73 | 72 | 896 | –7128 | |||
? | 225 | 96 | 51 | 33 | 2124 | –3200 | |
128 | 64 | 84 | 2200 | –2224 | |||
+ | 225 | 98 | 43 | 42 | 898 | –7126 | OA(15,7)?; Pasechnik(15) |
126 | 69 | 72 | 6126 | –998 | OA(15,9)? | ||
+ | 225 | 112 | 55 | 56 | 7112 | –8112 | skewhad$^2$; OA(15,8)?; 2-graph\* |
+ | 226 | 105 | 48 | 49 | 7113 | –8112 | switch skewhad2+*; 2-graph |
120 | 63 | 64 | 7112 | –8113 | S(2,8,113)?; 2-graph | ||
+ | 229 | 114 | 56 | 57 | 7.066114 | –8.066114 | Paley(229); 2-graph\* |
+ | 231 | 30 | 9 | 3 | 955 | –3175 | M22 - Cameron |
200 | 172 | 180 | 2175 | –1055 | |||
! | 231 | 40 | 20 | 4 | 1821 | –2209 | Triangular graph T(22) |
190 | 153 | 171 | 1209 | –1921 | pg(10,18,9)? | ||
? | 231 | 70 | 21 | 21 | 7110 | –7120 | pg(10,6,3)? |
160 | 110 | 112 | 6120 | –8110 | |||
? | 231 | 90 | 33 | 36 | 6132 | –998 | pg(10,8,4)? |
140 | 85 | 84 | 898 | –7132 | |||
? | 232 | 33 | 2 | 5 | 4144 | –787 | |
198 | 169 | 168 | 687 | –5144 | |||
? | 232 | 63 | 14 | 18 | 5144 | –987 | pg(7,8,2)? |
168 | 122 | 120 | 887 | –6144 | |||
? | 232 | 77 | 36 | 20 | 1928 | –3203 | |
154 | 96 | 114 | 2203 | –2028 | |||
? | 232 | 81 | 30 | 27 | 987 | –6144 | |
150 | 95 | 100 | 5144 | –1087 | S(2,10,145)? | ||
+ | 233 | 116 | 57 | 58 | 7.132116 | –8.132116 | Paley(233); 2-graph\* |
? | 235 | 42 | 9 | 7 | 794 | –5140 | |
192 | 156 | 160 | 4140 | –894 | |||
? | 235 | 52 | 9 | 12 | 5140 | –894 | |
182 | 141 | 140 | 794 | –6140 | |||
? | 236 | 55 | 18 | 11 | 1159 | –4176 | |
180 | 135 | 144 | 3176 | –1259 | S(2,12,177)? | ||
- | 237 | 118 | 58 | 59 | 7.197118 | –8.197118 | Conf |
? | 238 | 75 | 20 | 25 | 5153 | –1084 | |
162 | 111 | 108 | 984 | –6153 | |||
+ | 241 | 120 | 59 | 60 | 7.262120 | –8.262120 | Paley(241); 2-graph\* |
+ | 243 | 22 | 1 | 2 | 4132 | –5110 | 35.2.M11 (rk 3) - Berlekamp-vanLint-Seidel; Golay code: projective ternary [11,5] code with weights 6, 9 |
220 | 199 | 200 | 4110 | –5132 | |||
? | 243 | 66 | 9 | 21 | 3198 | –1544 | |
176 | 130 | 120 | 1444 | –4198 | |||
- | 243 | 88 | 52 | 20 | 3411 | –2231 | Absolute bound |
154 | 85 | 119 | 1231 | –3511 | Absolute bound | ||
+ | 243 | 110 | 37 | 60 | 2220 | –2522 | 35.2.M11 (rk 3) - Delsarte; projective ternary [55,5] code with weights 36, 45 |
132 | 81 | 60 | 2422 | –3220 | |||
? | 243 | 112 | 46 | 56 | 4182 | –1460 | pg(8,13,4)?; 2-graph\*? |
130 | 73 | 65 | 1360 | –5182 | 2-graph\*? | ||
? | 244 | 108 | 42 | 52 | 4183 | –1460 | 2-graph? |
135 | 78 | 70 | 1360 | –5183 | 2-graph? | ||
? | 244 | 117 | 60 | 52 | 1361 | –5182 | 2-graph? |
126 | 60 | 70 | 4182 | –1461 | 2-graph? | ||
? | 245 | 52 | 3 | 13 | 3195 | –1349 | |
192 | 152 | 144 | 1249 | –4195 | |||
? | 245 | 64 | 18 | 16 | 8100 | –6144 | |
180 | 131 | 135 | 5144 | –9100 | |||
? | 245 | 108 | 39 | 54 | 3204 | –1840 | pg(6,17,3)?; 2-graph\*? |
136 | 81 | 68 | 1740 | –4204 | 2-graph\*? | ||
? | 245 | 122 | 60 | 61 | 7.326122 | –8.326122 | 2-graph\*? |
? | 246 | 85 | 20 | 34 | 3204 | –1741 | pg(5,16,2)? |
160 | 108 | 96 | 1641 | –4204 | |||
? | 246 | 105 | 36 | 51 | 3205 | –1840 | 2-graph? |
140 | 85 | 72 | 1740 | –4205 | 2-graph? | ||
? | 246 | 119 | 64 | 51 | 1741 | –4204 | 2-graph? |
126 | 57 | 72 | 3204 | –1841 | 2-graph? | ||
+ | 247 | 54 | 21 | 9 | 1538 | –3208 | S(2,3,39) |
192 | 146 | 160 | 2208 | –1638 | pg(12,15,10)? | ||
? | 249 | 88 | 27 | 33 | 5165 | –1183 | |
160 | 104 | 100 | 1083 | –6165 | |||
- | 249 | 124 | 61 | 62 | 7.390124 | –8.390124 | Conf |
? | 250 | 81 | 24 | 27 | 6144 | –9105 | pg(9,8,3)? |
168 | 113 | 112 | 8105 | –7144 | |||
? | 250 | 96 | 44 | 32 | 1645 | –4204 | |
153 | 88 | 102 | 3204 | –1745 | pg(9,16,6)? |