| | v | k | λ | μ |
rf | sg | comments |
| - | 201 | 100 | 49 | 50 | 6.589100 | –7.589100 |
Conf |
| ? | 204 | 28 | 2 | 4 | 4119 | –684 |
|
| | | 175 | 150 | 150 | 584 | –5119 |
|
| ? | 204 | 63 | 22 | 18 | 968 | –5135 |
|
| | | 140 | 94 | 100 | 4135 | –1068 |
S(2,10,136)? |
| ? | 205 | 68 | 15 | 26 | 3164 | –1440 |
|
| | | 136 | 93 | 84 | 1340 | –4164 |
|
| ? | 205 | 96 | 50 | 40 | 1440 | –4164 |
|
| | | 108 | 51 | 63 | 3164 | –1540 |
|
| ? | 205 | 102 | 50 | 51 | 6.659102 | –7.659102 |
2-graph\*? |
| ? | 208 | 45 | 8 | 10 | 5117 | –790 |
|
| | | 162 | 126 | 126 | 690 | –6117 |
|
| + | 208 | 75 | 30 | 25 | 1064 | –5143 |
S(2,5,65); NU(3,4) |
| | | 132 | 81 | 88 | 4143 | –1164 |
pg(12,10,8)? |
| ? | 208 | 81 | 24 | 36 | 3168 | –1539 |
|
| | | 126 | 80 | 70 | 1439 | –4168 |
|
| - | 209 | 16 | 3 | 1 | 576 | –3132 |
mu=1 |
| | | 192 | 176 | 180 | 2132 | –676 |
|
| ? | 209 | 52 | 15 | 12 | 876 | –5132 |
|
| | | 156 | 115 | 120 | 4132 | –976 |
|
| + | 209 | 100 | 45 | 50 | 5132 | –1076 |
pg(10,9,5)?; 2-graph\* |
| | | 108 | 57 | 54 | 976 | –6132 |
2-graph\* |
| - | 209 | 104 | 51 | 52 | 6.728104 | –7.728104 |
Conf |
| ? | 210 | 33 | 0 | 6 | 3154 | –955 |
|
| | | 176 | 148 | 144 | 855 | –4154 |
|
| ! | 210 | 38 | 19 | 4 | 1720 | –2189 |
Triangular graph T(21) |
| | | 171 | 136 | 153 | 1189 | –1820 |
|
| ? | 210 | 76 | 26 | 28 | 6114 | –895 |
|
| | | 133 | 84 | 84 | 795 | –7114 |
|
| ? | 210 | 77 | 28 | 28 | 799 | –7110 |
|
| | | 132 | 82 | 84 | 6110 | –899 |
|
| + | 210 | 95 | 40 | 45 | 5133 | –1076 |
Jasper; 2-graph |
| | | 114 | 63 | 60 | 976 | –6133 |
2-graph |
| + | 210 | 99 | 48 | 45 | 977 | –6132 |
Sym(7) - Klin, cf. Klin_et_al; 2-graph |
| | | 110 | 55 | 60 | 5132 | –1077 |
pg(11,9,6)?; 2-graph |
| - | 213 | 106 | 52 | 53 | 6.797106 | –7.797106 |
Conf |
| + | 216 | 40 | 4 | 8 | 4140 | –875 |
O−(6,2) Crnkovic_et_al |
| | | 175 | 142 | 140 | 775 | –5140 |
|
| ? | 216 | 43 | 10 | 8 | 786 | –5129 |
|
| | | 172 | 136 | 140 | 4129 | –886 |
|
| - | 216 | 70 | 40 | 14 | 2812 | –2203 |
Absolute bound |
| | | 145 | 88 | 116 | 1203 | –2912 |
Absolute bound |
| ? | 216 | 75 | 18 | 30 | 3175 | –1540 |
pg(5,14,2)? |
| | | 140 | 94 | 84 | 1440 | –4175 |
|
| ? | 216 | 86 | 40 | 30 | 1443 | –4172 |
|
| | | 129 | 72 | 84 | 3172 | –1543 |
|
| ? | 216 | 90 | 39 | 36 | 980 | –6135 |
S(2,6,81)? |
| | | 125 | 70 | 75 | 5135 | –1080 |
|
| ? | 217 | 66 | 15 | 22 | 4154 | –1162 |
pg(6,10,2)? |
| | | 150 | 105 | 100 | 1062 | –5154 |
|
| ? | 217 | 88 | 39 | 33 | 1162 | –5154 |
|
| | | 128 | 72 | 80 | 4154 | –1262 |
|
| - | 217 | 108 | 53 | 54 | 6.865108 | –7.865108 |
Conf |
| ? | 220 | 72 | 22 | 24 | 6120 | –899 |
pg(9,7,3)? |
| | | 147 | 98 | 98 | 799 | –7120 |
|
| + | 220 | 84 | 38 | 28 | 1444 | –4175 |
Tonchev: intersection-3 graph of a quasisymmetric 2-(45,9,8) design with intersection numbers 1, 3 |
| | | 135 | 78 | 90 | 3175 | –1544 |
pg(9,14,6)? |
| + | 221 | 64 | 24 | 16 | 1251 | –4169 |
S(2,4,52) |
| | | 156 | 107 | 117 | 3169 | –1351 |
pg(12,12,9) |
| ? | 221 | 110 | 54 | 55 | 6.933110 | –7.933110 |
2-graph\*? |
| + | 222 | 51 | 20 | 9 | 1436 | –3185 |
S(2,3,37) |
| | | 170 | 127 | 140 | 2185 | –1536 |
|
| ! | 225 | 28 | 13 | 2 | 1328 | –2196 |
152 |
| | | 196 | 169 | 182 | 1196 | –1428 |
OA(15,14)? |
| + | 225 | 42 | 15 | 6 | 1242 | –3182 |
OA(15,3) |
| | | 182 | 145 | 156 | 2182 | –1342 |
OA(15,13)? |
| ? | 225 | 48 | 3 | 12 | 3176 | –1248 |
|
| | | 176 | 139 | 132 | 1148 | –4176 |
|
| - | 225 | 56 | 1 | 18 | 2200 | –1924 |
Krein2 |
| | | 168 | 129 | 114 | 1824 | –3200 |
Krein1 |
| + | 225 | 56 | 19 | 12 | 1156 | –4168 |
OA(15,4) |
| | | 168 | 123 | 132 | 3168 | –1256 |
OA(15,12)? |
| ? | 225 | 64 | 13 | 20 | 4160 | –1164 |
|
| | | 160 | 115 | 110 | 1064 | –5160 |
|
| + | 225 | 70 | 25 | 20 | 1070 | –5154 |
OA(15,5) |
| | | 154 | 103 | 110 | 4154 | –1170 |
OA(15,11)? |
| ? | 225 | 80 | 25 | 30 | 5144 | –1080 |
pg(8,9,3)? |
| | | 144 | 93 | 90 | 980 | –6144 |
|
| + | 225 | 84 | 33 | 30 | 984 | –6140 |
OA(15,6) |
| | | 140 | 85 | 90 | 5140 | –1084 |
OA(15,10)? |
| - | 225 | 96 | 19 | 57 | 1216 | –398 |
Krein2; Absolute bound |
| | | 128 | 88 | 52 | 388 | –2216 |
Krein1; Absolute bound |
| ? | 225 | 96 | 39 | 42 | 6128 | –996 |
|
| | | 128 | 73 | 72 | 896 | –7128 |
|
| ? | 225 | 96 | 51 | 33 | 2124 | –3200 |
|
| | | 128 | 64 | 84 | 2200 | –2224 |
|
| + | 225 | 98 | 43 | 42 | 898 | –7126 |
OA(15,7)?; Pasechnik(15) |
| | | 126 | 69 | 72 | 6126 | –998 |
OA(15,9)? |
| + | 225 | 112 | 55 | 56 | 7112 | –8112 |
skewhad$^2$; OA(15,8)?; 2-graph\* |
| + | 226 | 105 | 48 | 49 | 7113 | –8112 |
switch skewhad2+*; 2-graph |
| | | 120 | 63 | 64 | 7112 | –8113 |
S(2,8,113)?; 2-graph |
| + | 229 | 114 | 56 | 57 | 7.066114 | –8.066114 |
Paley(229); 2-graph\* |
| + | 231 | 30 | 9 | 3 | 955 | –3175 |
M22 - Cameron |
| | | 200 | 172 | 180 | 2175 | –1055 |
|
| ! | 231 | 40 | 20 | 4 | 1821 | –2209 |
Triangular graph T(22) |
| | | 190 | 153 | 171 | 1209 | –1921 |
pg(10,18,9)? |
| ? | 231 | 70 | 21 | 21 | 7110 | –7120 |
pg(10,6,3)? |
| | | 160 | 110 | 112 | 6120 | –8110 |
|
| ? | 231 | 90 | 33 | 36 | 6132 | –998 |
pg(10,8,4)? |
| | | 140 | 85 | 84 | 898 | –7132 |
|
| ? | 232 | 33 | 2 | 5 | 4144 | –787 |
|
| | | 198 | 169 | 168 | 687 | –5144 |
|
| ? | 232 | 63 | 14 | 18 | 5144 | –987 |
pg(7,8,2)? |
| | | 168 | 122 | 120 | 887 | –6144 |
|
| ? | 232 | 77 | 36 | 20 | 1928 | –3203 |
|
| | | 154 | 96 | 114 | 2203 | –2028 |
|
| ? | 232 | 81 | 30 | 27 | 987 | –6144 |
|
| | | 150 | 95 | 100 | 5144 | –1087 |
S(2,10,145)? |
| + | 233 | 116 | 57 | 58 | 7.132116 | –8.132116 |
Paley(233); 2-graph\* |
| ? | 235 | 42 | 9 | 7 | 794 | –5140 |
|
| | | 192 | 156 | 160 | 4140 | –894 |
|
| ? | 235 | 52 | 9 | 12 | 5140 | –894 |
|
| | | 182 | 141 | 140 | 794 | –6140 |
|
| ? | 236 | 55 | 18 | 11 | 1159 | –4176 |
|
| | | 180 | 135 | 144 | 3176 | –1259 |
S(2,12,177)? |
| - | 237 | 118 | 58 | 59 | 7.197118 | –8.197118 |
Conf |
| ? | 238 | 75 | 20 | 25 | 5153 | –1084 |
|
| | | 162 | 111 | 108 | 984 | –6153 |
|
| + | 241 | 120 | 59 | 60 | 7.262120 | –8.262120 |
Paley(241); 2-graph\* |
| + | 243 | 22 | 1 | 2 | 4132 | –5110 |
35.2.M11 (rk 3) - Berlekamp-vanLint-Seidel; Golay code: projective ternary [11,5] code with weights 6, 9 |
| | | 220 | 199 | 200 | 4110 | –5132 |
|
| ? | 243 | 66 | 9 | 21 | 3198 | –1544 |
|
| | | 176 | 130 | 120 | 1444 | –4198 |
|
| - | 243 | 88 | 52 | 20 | 3411 | –2231 |
Absolute bound |
| | | 154 | 85 | 119 | 1231 | –3511 |
Absolute bound |
| + | 243 | 110 | 37 | 60 | 2220 | –2522 |
35.2.M11 (rk 3) - Delsarte; projective ternary [55,5] code with weights 36, 45 |
| | | 132 | 81 | 60 | 2422 | –3220 |
|
| ? | 243 | 112 | 46 | 56 | 4182 | –1460 |
pg(8,13,4)?; 2-graph\*? |
| | | 130 | 73 | 65 | 1360 | –5182 |
2-graph\*? |
| ? | 244 | 108 | 42 | 52 | 4183 | –1460 |
2-graph? |
| | | 135 | 78 | 70 | 1360 | –5183 |
2-graph? |
| ? | 244 | 117 | 60 | 52 | 1361 | –5182 |
2-graph? |
| | | 126 | 60 | 70 | 4182 | –1461 |
2-graph? |
| ? | 245 | 52 | 3 | 13 | 3195 | –1349 |
|
| | | 192 | 152 | 144 | 1249 | –4195 |
|
| ? | 245 | 64 | 18 | 16 | 8100 | –6144 |
|
| | | 180 | 131 | 135 | 5144 | –9100 |
|
| ? | 245 | 108 | 39 | 54 | 3204 | –1840 |
pg(6,17,3)?; 2-graph\*? |
| | | 136 | 81 | 68 | 1740 | –4204 |
2-graph\*? |
| ? | 245 | 122 | 60 | 61 | 7.326122 | –8.326122 |
2-graph\*? |
| ? | 246 | 85 | 20 | 34 | 3204 | –1741 |
pg(5,16,2)? |
| | | 160 | 108 | 96 | 1641 | –4204 |
|
| ? | 246 | 105 | 36 | 51 | 3205 | –1840 |
2-graph? |
| | | 140 | 85 | 72 | 1740 | –4205 |
2-graph? |
| ? | 246 | 119 | 64 | 51 | 1741 | –4204 |
2-graph? |
| | | 126 | 57 | 72 | 3204 | –1841 |
2-graph? |
| + | 247 | 54 | 21 | 9 | 1538 | –3208 |
S(2,3,39) |
| | | 192 | 146 | 160 | 2208 | –1638 |
pg(12,15,10)? |
| ? | 249 | 88 | 27 | 33 | 5165 | –1183 |
|
| | | 160 | 104 | 100 | 1083 | –6165 |
|
| - | 249 | 124 | 61 | 62 | 7.390124 | –8.390124 |
Conf |
| ? | 250 | 81 | 24 | 27 | 6144 | –9105 |
pg(9,8,3)? |
| | | 168 | 113 | 112 | 8105 | –7144 |
|
| ? | 250 | 96 | 44 | 32 | 1645 | –4204 |
|
| | | 153 | 88 | 102 | 3204 | –1745 |
pg(9,16,6)? |