| | v | k | λ | μ |
rf | sg | comments |
| ! | 153 | 32 | 16 | 4 | 1417 | –2135 |
Triangular graph T(18) |
| | | 120 | 91 | 105 | 1135 | –1517 |
pg(8,14,7) |
| ? | 153 | 56 | 19 | 21 | 584 | –768 |
pg(8,6,3)? |
| | | 96 | 60 | 60 | 668 | –684 |
|
| ? | 153 | 76 | 37 | 38 | 5.68576 | –6.68576 |
2-graph\*? |
| ? | 154 | 48 | 12 | 16 | 498 | –855 |
pg(6,7,2)? |
| | | 105 | 72 | 70 | 755 | –598 |
|
| - | 154 | 51 | 8 | 21 | 2132 | –1521 |
Krein2 |
| | | 102 | 71 | 60 | 1421 | –3132 |
Krein1 |
| ? | 154 | 72 | 26 | 40 | 2132 | –1621 |
|
| | | 81 | 48 | 36 | 1521 | –3132 |
|
| + | 155 | 42 | 17 | 9 | 1130 | –3124 |
S(2,3,31); lines in PG(4,2) |
| | | 112 | 78 | 88 | 2124 | –1230 |
|
| + | 156 | 30 | 4 | 6 | 490 | –665 |
O(5,5) Sp(4,5); GQ(5,5) |
| | | 125 | 100 | 100 | 565 | –590 |
|
| + | 157 | 78 | 38 | 39 | 5.76578 | –6.76578 |
Paley(157); 2-graph\* |
| ? | 160 | 54 | 18 | 18 | 675 | –684 |
pg(9,5,3) does not exist (no 2-graph\* for line graph) |
| | | 105 | 68 | 70 | 584 | –775 |
|
| - | 161 | 80 | 39 | 40 | 5.84480 | –6.84480 |
Conf |
| ? | 162 | 21 | 0 | 3 | 3105 | –656 |
|
| | | 140 | 121 | 120 | 556 | –4105 |
|
| ? | 162 | 23 | 4 | 3 | 569 | –492 |
|
| | | 138 | 117 | 120 | 392 | –669 |
|
| ? | 162 | 49 | 16 | 14 | 763 | –598 |
|
| | | 112 | 76 | 80 | 498 | –863 |
|
| ! | 162 | 56 | 10 | 24 | 2140 | –1621 |
q222=0 |
| | | 105 | 72 | 60 | 1521 | –3140 |
U4(3) / L3(4) - sub McLaughlin; q111=0 |
| ? | 162 | 69 | 36 | 24 | 1523 | –3138 |
|
| | | 92 | 46 | 60 | 2138 | –1623 |
|
| + | 165 | 36 | 3 | 9 | 3120 | –944 |
U(5,2) polar graph; GQ(4,8) |
| | | 128 | 100 | 96 | 844 | –4120 |
|
| - | 165 | 82 | 40 | 41 | 5.92382 | –6.92382 |
Conf |
| ! | 169 | 24 | 11 | 2 | 1124 | –2144 |
132 |
| | | 144 | 121 | 132 | 1144 | –1224 |
OA(13,12) |
| + | 169 | 36 | 13 | 6 | 1036 | –3132 |
OA(13,3) |
| | | 132 | 101 | 110 | 2132 | –1136 |
OA(13,11) |
| ? | 169 | 42 | 5 | 12 | 3126 | –1042 |
|
| | | 126 | 95 | 90 | 942 | –4126 |
|
| + | 169 | 48 | 17 | 12 | 948 | –4120 |
OA(13,4) |
| | | 120 | 83 | 90 | 3120 | –1048 |
OA(13,10) |
| ? | 169 | 56 | 15 | 20 | 4112 | –956 |
|
| | | 112 | 75 | 72 | 856 | –5112 |
|
| + | 169 | 60 | 23 | 20 | 860 | –5108 |
OA(13,5) |
| | | 108 | 67 | 72 | 4108 | –960 |
OA(13,9) |
| ? | 169 | 70 | 27 | 30 | 598 | –870 |
|
| | | 98 | 57 | 56 | 770 | –698 |
|
| + | 169 | 72 | 31 | 30 | 772 | –696 |
OA(13,6) |
| | | 96 | 53 | 56 | 596 | –872 |
OA(13,8) |
| + | 169 | 84 | 41 | 42 | 684 | –784 |
Paley(169); OA(13,7); 2-graph\* |
| + | 170 | 78 | 35 | 36 | 685 | –784 |
switch OA(13,7)+*; 2-graph |
| | | 91 | 48 | 49 | 684 | –785 |
S(2,7,85)?; 2-graph |
| ! | 171 | 34 | 17 | 4 | 1518 | –2152 |
Triangular graph T(19) |
| | | 136 | 105 | 120 | 1152 | –1618 |
|
| ? | 171 | 50 | 13 | 15 | 595 | –775 |
|
| | | 120 | 84 | 84 | 675 | –695 |
|
| ? | 171 | 60 | 15 | 24 | 3132 | –1238 |
pg(5,11,2)? |
| | | 110 | 73 | 66 | 1138 | –4132 |
|
| + | 173 | 86 | 42 | 43 | 6.07686 | –7.07686 |
Paley(173); 2-graph\* |
| + | 175 | 30 | 5 | 5 | 584 | –590 |
Wallis (AR(5,1)+S(2,2,7)); GQ(6,4) |
| | | 144 | 118 | 120 | 490 | –684 |
|
| ? | 175 | 66 | 29 | 22 | 1142 | –4132 |
|
| | | 108 | 63 | 72 | 3132 | –1242 |
pg(9,11,6)? |
| + | 175 | 72 | 20 | 36 | 2153 | –1821 |
edges of Hoffman-Singleton graph - Haemers; pg(4,17,2) - Haemers; 2-graph\* |
| | | 102 | 65 | 51 | 1721 | –3153 |
2-graph\* |
| ? | 176 | 25 | 0 | 4 | 3120 | –755 |
|
| | | 150 | 128 | 126 | 655 | –4120 |
|
| + | 176 | 40 | 12 | 8 | 855 | –4120 |
pg(10,3,2) does not exist (Absolute bound for line graph) |
| | | 135 | 102 | 108 | 3120 | –955 |
NU(5,2) |
| + | 176 | 45 | 18 | 9 | 1232 | –3143 |
S(2,3,33) |
| | | 130 | 93 | 104 | 2143 | –1332 |
pg(10,12,8)? |
| + | 176 | 49 | 12 | 14 | 598 | –777 |
Higman symmetric 2-design; pg(7,6,2)? |
| | | 126 | 90 | 90 | 677 | –698 |
|
| ! | 176 | 70 | 18 | 34 | 2154 | –1821 |
S(4,7,23)\S(3,6,22) - M22/Alt(7); unique by Coolsaet & Degraer; 2-graph |
| | | 105 | 68 | 54 | 1721 | –3154 |
Witt 3-(22,7,4): intersection-3 graph of a quasisymmetric 2-(22,7,16) design with intersection numbers 1, 3; 2-graph |
| ? | 176 | 70 | 24 | 30 | 4120 | –1055 |
pg(7,9,3)? |
| | | 105 | 64 | 60 | 955 | –5120 |
|
| - | 176 | 70 | 42 | 18 | 2610 | –2165 |
Absolute bound |
| | | 105 | 52 | 78 | 1165 | –2710 |
Absolute bound |
| + | 176 | 85 | 48 | 34 | 1722 | –3153 |
Haemers; 2-graph |
| | | 90 | 38 | 54 | 2153 | –1822 |
pg(5,17,3)?; 2-graph |
| - | 177 | 88 | 43 | 44 | 6.15288 | –7.15288 |
Conf |
| + | 181 | 90 | 44 | 45 | 6.22790 | –7.22790 |
Paley(181); 2-graph\* |
| ? | 183 | 52 | 11 | 16 | 4122 | –960 |
|
| | | 130 | 93 | 90 | 860 | –5122 |
|
| + | 183 | 70 | 29 | 25 | 960 | –5122 |
S(2,5,61) |
| | | 112 | 66 | 72 | 4122 | –1060 |
|
| - | 184 | 48 | 2 | 16 | 2160 | –1623 |
Krein2 |
| | | 135 | 102 | 90 | 1523 | –3160 |
Krein1 |
| ? | 185 | 92 | 45 | 46 | 6.30192 | –7.30192 |
2-graph\*? |
| ? | 189 | 48 | 12 | 12 | 690 | –698 |
pg(8,5,2)? |
| | | 140 | 103 | 105 | 598 | –790 |
|
| ? | 189 | 60 | 27 | 15 | 1528 | –3160 |
|
| | | 128 | 82 | 96 | 2160 | –1628 |
pg(8,15,6)? |
| ? | 189 | 88 | 37 | 44 | 4132 | –1156 |
pg(8,10,4)?; 2-graph\*? |
| | | 100 | 55 | 50 | 1056 | –5132 |
2-graph\*? |
| - | 189 | 94 | 46 | 47 | 6.37494 | –7.37494 |
Conf |
| ! | 190 | 36 | 18 | 4 | 1619 | –2170 |
Triangular graph T(20) |
| | | 153 | 120 | 136 | 1170 | –1719 |
pg(9,16,8)? |
| ? | 190 | 45 | 12 | 10 | 775 | –5114 |
pg(9,4,2) does not exist (Azarija-Marc for line graph) |
| | | 144 | 108 | 112 | 4114 | –875 |
|
| ? | 190 | 84 | 33 | 40 | 4133 | –1156 |
2-graph? |
| | | 105 | 60 | 55 | 1056 | –5133 |
2-graph? |
| + | 190 | 84 | 38 | 36 | 875 | –6114 |
S(2,6,76) |
| | | 105 | 56 | 60 | 5114 | –975 |
|
| ? | 190 | 90 | 45 | 40 | 1057 | –5132 |
2-graph? |
| | | 99 | 48 | 55 | 4132 | –1157 |
pg(9,10,5)?; 2-graph? |
| + | 193 | 96 | 47 | 48 | 6.44696 | –7.44696 |
Paley(193); 2-graph\* |
| + | 195 | 96 | 46 | 48 | 6104 | –890 |
pg(12,7,6)?; 2-graph\* |
| | | 98 | 49 | 49 | 790 | –7104 |
S(2,7,91); 2-graph\* |
| ! | 196 | 26 | 12 | 2 | 1226 | –2169 |
142 |
| | | 169 | 144 | 156 | 1169 | –1326 |
OA(14,13)? |
| ? | 196 | 39 | 2 | 9 | 3147 | –1048 |
|
| | | 156 | 125 | 120 | 948 | –4147 |
|
| + | 196 | 39 | 14 | 6 | 1139 | –3156 |
OA(14,3) |
| | | 156 | 122 | 132 | 2156 | –1239 |
OA(14,12)? |
| ? | 196 | 45 | 4 | 12 | 3150 | –1145 |
|
| | | 150 | 116 | 110 | 1045 | –4150 |
|
| + | 196 | 52 | 18 | 12 | 1052 | –4143 |
OA(14,4) |
| | | 143 | 102 | 110 | 3143 | –1152 |
OA(14,11)? |
| + | 196 | 60 | 14 | 20 | 4135 | –1060 |
Huang-Huang-Lin(q=8); pg(6,9,2)? |
| | | 135 | 94 | 90 | 960 | –5135 |
|
| + | 196 | 60 | 23 | 16 | 1148 | –4147 |
S(2,4,49); Huffman-Tonchev: intersection-3 graph of a quasisymmetric 2-(49,9,6) design with intersection numbers 1, 3 |
| | | 135 | 90 | 99 | 3147 | –1248 |
|
| + | 196 | 65 | 24 | 20 | 965 | –5130 |
OA(14,5) |
| | | 130 | 84 | 90 | 4130 | –1065 |
OA(14,10)? |
| ? | 196 | 75 | 26 | 30 | 5120 | –975 |
|
| | | 120 | 74 | 72 | 875 | –6120 |
|
| + | 196 | 78 | 32 | 30 | 878 | –6117 |
OA(14,6) |
| | | 117 | 68 | 72 | 5117 | –978 |
OA(14,9)? |
| ? | 196 | 81 | 42 | 27 | 1824 | –3171 |
|
| | | 114 | 59 | 76 | 2171 | –1924 |
pg(6,18,4)? |
| - | 196 | 85 | 18 | 51 | 1187 | –348 |
Krein2; Absolute bound |
| | | 110 | 75 | 44 | 338 | –2187 |
Krein1; Absolute bound |
| ? | 196 | 90 | 40 | 42 | 6105 | –890 |
RSHCD–?; 2-graph? |
| | | 105 | 56 | 56 | 790 | –7105 |
2-graph? |
| + | 196 | 91 | 42 | 42 | 791 | –7104 |
OA(14,7)?; RSHCD+; 2-graph |
| | | 104 | 54 | 56 | 6104 | –891 |
OA(14,8)?; 2-graph |
| + | 197 | 98 | 48 | 49 | 6.51898 | –7.51898 |
Paley(197); 2-graph\* |