v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
! | 153 | 32 | 16 | 4 | 1417 | –2135 | Triangular graph T(18) |
120 | 91 | 105 | 1135 | –1517 | pg(8,14,7) | ||
? | 153 | 56 | 19 | 21 | 584 | –768 | pg(8,6,3)? |
96 | 60 | 60 | 668 | –684 | |||
? | 153 | 76 | 37 | 38 | 5.68576 | –6.68576 | 2-graph\*? |
? | 154 | 48 | 12 | 16 | 498 | –855 | pg(6,7,2)? |
105 | 72 | 70 | 755 | –598 | |||
- | 154 | 51 | 8 | 21 | 2132 | –1521 | Krein2 |
102 | 71 | 60 | 1421 | –3132 | Krein1 | ||
? | 154 | 72 | 26 | 40 | 2132 | –1621 | |
81 | 48 | 36 | 1521 | –3132 | |||
+ | 155 | 42 | 17 | 9 | 1130 | –3124 | S(2,3,31); lines in PG(4,2) |
112 | 78 | 88 | 2124 | –1230 | |||
+ | 156 | 30 | 4 | 6 | 490 | –665 | O(5,5) Sp(4,5); GQ(5,5) |
125 | 100 | 100 | 565 | –590 | |||
+ | 157 | 78 | 38 | 39 | 5.76578 | –6.76578 | Paley(157); 2-graph\* |
? | 160 | 54 | 18 | 18 | 675 | –684 | pg(9,5,3) does not exist (no 2-graph\* for line graph) |
105 | 68 | 70 | 584 | –775 | |||
- | 161 | 80 | 39 | 40 | 5.84480 | –6.84480 | Conf |
? | 162 | 21 | 0 | 3 | 3105 | –656 | |
140 | 121 | 120 | 556 | –4105 | |||
? | 162 | 23 | 4 | 3 | 569 | –492 | |
138 | 117 | 120 | 392 | –669 | |||
? | 162 | 49 | 16 | 14 | 763 | –598 | |
112 | 76 | 80 | 498 | –863 | |||
! | 162 | 56 | 10 | 24 | 2140 | –1621 | q222=0 |
105 | 72 | 60 | 1521 | –3140 | U4(3) / L3(4) - sub McLaughlin; q111=0 | ||
? | 162 | 69 | 36 | 24 | 1523 | –3138 | |
92 | 46 | 60 | 2138 | –1623 | |||
+ | 165 | 36 | 3 | 9 | 3120 | –944 | U(5,2) polar graph; GQ(4,8) |
128 | 100 | 96 | 844 | –4120 | |||
- | 165 | 82 | 40 | 41 | 5.92382 | –6.92382 | Conf |
! | 169 | 24 | 11 | 2 | 1124 | –2144 | 132 |
144 | 121 | 132 | 1144 | –1224 | OA(13,12) | ||
+ | 169 | 36 | 13 | 6 | 1036 | –3132 | OA(13,3) |
132 | 101 | 110 | 2132 | –1136 | OA(13,11) | ||
? | 169 | 42 | 5 | 12 | 3126 | –1042 | |
126 | 95 | 90 | 942 | –4126 | |||
+ | 169 | 48 | 17 | 12 | 948 | –4120 | OA(13,4) |
120 | 83 | 90 | 3120 | –1048 | OA(13,10) | ||
? | 169 | 56 | 15 | 20 | 4112 | –956 | |
112 | 75 | 72 | 856 | –5112 | |||
+ | 169 | 60 | 23 | 20 | 860 | –5108 | OA(13,5) |
108 | 67 | 72 | 4108 | –960 | OA(13,9) | ||
? | 169 | 70 | 27 | 30 | 598 | –870 | |
98 | 57 | 56 | 770 | –698 | |||
+ | 169 | 72 | 31 | 30 | 772 | –696 | OA(13,6) |
96 | 53 | 56 | 596 | –872 | OA(13,8) | ||
+ | 169 | 84 | 41 | 42 | 684 | –784 | Paley(169); OA(13,7); 2-graph\* |
+ | 170 | 78 | 35 | 36 | 685 | –784 | switch OA(13,7)+*; 2-graph |
91 | 48 | 49 | 684 | –785 | S(2,7,85)?; 2-graph | ||
! | 171 | 34 | 17 | 4 | 1518 | –2152 | Triangular graph T(19) |
136 | 105 | 120 | 1152 | –1618 | |||
? | 171 | 50 | 13 | 15 | 595 | –775 | |
120 | 84 | 84 | 675 | –695 | |||
? | 171 | 60 | 15 | 24 | 3132 | –1238 | pg(5,11,2)? |
110 | 73 | 66 | 1138 | –4132 | |||
+ | 173 | 86 | 42 | 43 | 6.07686 | –7.07686 | Paley(173); 2-graph\* |
+ | 175 | 30 | 5 | 5 | 584 | –590 | Wallis (AR(5,1)+S(2,2,7)); GQ(6,4) |
144 | 118 | 120 | 490 | –684 | |||
? | 175 | 66 | 29 | 22 | 1142 | –4132 | |
108 | 63 | 72 | 3132 | –1242 | pg(9,11,6)? | ||
+ | 175 | 72 | 20 | 36 | 2153 | –1821 | edges of Hoffman-Singleton graph - Haemers; pg(4,17,2) - Haemers; 2-graph\* |
102 | 65 | 51 | 1721 | –3153 | 2-graph\* | ||
? | 176 | 25 | 0 | 4 | 3120 | –755 | |
150 | 128 | 126 | 655 | –4120 | |||
+ | 176 | 40 | 12 | 8 | 855 | –4120 | pg(10,3,2) does not exist (Absolute bound for line graph) |
135 | 102 | 108 | 3120 | –955 | NU(5,2) | ||
+ | 176 | 45 | 18 | 9 | 1232 | –3143 | S(2,3,33) |
130 | 93 | 104 | 2143 | –1332 | pg(10,12,8)? | ||
+ | 176 | 49 | 12 | 14 | 598 | –777 | Higman symmetric 2-design; pg(7,6,2)? |
126 | 90 | 90 | 677 | –698 | |||
! | 176 | 70 | 18 | 34 | 2154 | –1821 | S(4,7,23)\S(3,6,22) - M22/Alt(7); unique by Coolsaet & Degraer; 2-graph |
105 | 68 | 54 | 1721 | –3154 | Witt 3-(22,7,4): intersection-3 graph of a quasisymmetric 2-(22,7,16) design with intersection numbers 1, 3; 2-graph | ||
? | 176 | 70 | 24 | 30 | 4120 | –1055 | pg(7,9,3)? |
105 | 64 | 60 | 955 | –5120 | |||
- | 176 | 70 | 42 | 18 | 2610 | –2165 | Absolute bound |
105 | 52 | 78 | 1165 | –2710 | Absolute bound | ||
+ | 176 | 85 | 48 | 34 | 1722 | –3153 | Haemers; 2-graph |
90 | 38 | 54 | 2153 | –1822 | pg(5,17,3)?; 2-graph | ||
- | 177 | 88 | 43 | 44 | 6.15288 | –7.15288 | Conf |
+ | 181 | 90 | 44 | 45 | 6.22790 | –7.22790 | Paley(181); 2-graph\* |
? | 183 | 52 | 11 | 16 | 4122 | –960 | |
130 | 93 | 90 | 860 | –5122 | |||
+ | 183 | 70 | 29 | 25 | 960 | –5122 | S(2,5,61) |
112 | 66 | 72 | 4122 | –1060 | |||
- | 184 | 48 | 2 | 16 | 2160 | –1623 | Krein2 |
135 | 102 | 90 | 1523 | –3160 | Krein1 | ||
? | 185 | 92 | 45 | 46 | 6.30192 | –7.30192 | 2-graph\*? |
? | 189 | 48 | 12 | 12 | 690 | –698 | pg(8,5,2)? |
140 | 103 | 105 | 598 | –790 | |||
? | 189 | 60 | 27 | 15 | 1528 | –3160 | |
128 | 82 | 96 | 2160 | –1628 | pg(8,15,6)? | ||
? | 189 | 88 | 37 | 44 | 4132 | –1156 | pg(8,10,4)?; 2-graph\*? |
100 | 55 | 50 | 1056 | –5132 | 2-graph\*? | ||
- | 189 | 94 | 46 | 47 | 6.37494 | –7.37494 | Conf |
! | 190 | 36 | 18 | 4 | 1619 | –2170 | Triangular graph T(20) |
153 | 120 | 136 | 1170 | –1719 | pg(9,16,8)? | ||
? | 190 | 45 | 12 | 10 | 775 | –5114 | pg(9,4,2) does not exist (Azarija-Marc for line graph) |
144 | 108 | 112 | 4114 | –875 | |||
? | 190 | 84 | 33 | 40 | 4133 | –1156 | 2-graph? |
105 | 60 | 55 | 1056 | –5133 | 2-graph? | ||
+ | 190 | 84 | 38 | 36 | 875 | –6114 | S(2,6,76) |
105 | 56 | 60 | 5114 | –975 | |||
? | 190 | 90 | 45 | 40 | 1057 | –5132 | 2-graph? |
99 | 48 | 55 | 4132 | –1157 | pg(9,10,5)?; 2-graph? | ||
+ | 193 | 96 | 47 | 48 | 6.44696 | –7.44696 | Paley(193); 2-graph\* |
+ | 195 | 96 | 46 | 48 | 6104 | –890 | pg(12,7,6)?; 2-graph\* |
98 | 49 | 49 | 790 | –7104 | S(2,7,91); 2-graph\* | ||
! | 196 | 26 | 12 | 2 | 1226 | –2169 | 142 |
169 | 144 | 156 | 1169 | –1326 | OA(14,13)? | ||
? | 196 | 39 | 2 | 9 | 3147 | –1048 | |
156 | 125 | 120 | 948 | –4147 | |||
+ | 196 | 39 | 14 | 6 | 1139 | –3156 | OA(14,3) |
156 | 122 | 132 | 2156 | –1239 | OA(14,12)? | ||
? | 196 | 45 | 4 | 12 | 3150 | –1145 | |
150 | 116 | 110 | 1045 | –4150 | |||
+ | 196 | 52 | 18 | 12 | 1052 | –4143 | OA(14,4) |
143 | 102 | 110 | 3143 | –1152 | OA(14,11)? | ||
+ | 196 | 60 | 14 | 20 | 4135 | –1060 | Huang-Huang-Lin(q=8); pg(6,9,2)? |
135 | 94 | 90 | 960 | –5135 | |||
+ | 196 | 60 | 23 | 16 | 1148 | –4147 | S(2,4,49); Huffman-Tonchev: intersection-3 graph of a quasisymmetric 2-(49,9,6) design with intersection numbers 1, 3 |
135 | 90 | 99 | 3147 | –1248 | |||
+ | 196 | 65 | 24 | 20 | 965 | –5130 | OA(14,5) |
130 | 84 | 90 | 4130 | –1065 | OA(14,10)? | ||
? | 196 | 75 | 26 | 30 | 5120 | –975 | |
120 | 74 | 72 | 875 | –6120 | |||
+ | 196 | 78 | 32 | 30 | 878 | –6117 | OA(14,6) |
117 | 68 | 72 | 5117 | –978 | OA(14,9)? | ||
? | 196 | 81 | 42 | 27 | 1824 | –3171 | |
114 | 59 | 76 | 2171 | –1924 | pg(6,18,4)? | ||
- | 196 | 85 | 18 | 51 | 1187 | –348 | Krein2; Absolute bound |
110 | 75 | 44 | 338 | –2187 | Krein1; Absolute bound | ||
? | 196 | 90 | 40 | 42 | 6105 | –890 | RSHCD–?; 2-graph? |
105 | 56 | 56 | 790 | –7105 | 2-graph? | ||
+ | 196 | 91 | 42 | 42 | 791 | –7104 | OA(14,7)?; RSHCD+; 2-graph |
104 | 54 | 56 | 6104 | –891 | OA(14,8)?; 2-graph | ||
+ | 197 | 98 | 48 | 49 | 6.51898 | –7.51898 | Paley(197); 2-graph\* |