v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
+ | 101 | 50 | 24 | 25 | 4.52550 | –5.52550 | Paley(101); 2-graph\* |
! | 105 | 26 | 13 | 4 | 1114 | –290 | Triangular graph T(15) |
78 | 55 | 66 | 190 | –1214 | |||
! | 105 | 32 | 4 | 12 | 284 | –1020 | Aut L(3,4) on flags (rk 4) - Goethals & Seidel, unique by Coolsaet |
72 | 51 | 45 | 920 | –384 | |||
? | 105 | 40 | 15 | 15 | 548 | –556 | |
64 | 38 | 40 | 456 | –648 | |||
? | 105 | 52 | 21 | 30 | 284 | –1120 | |
52 | 29 | 22 | 1020 | –384 | |||
- | 105 | 52 | 25 | 26 | 4.62352 | –5.62352 | Conf |
+ | 109 | 54 | 26 | 27 | 4.72054 | –5.72054 | Paley(109); 2-graph\* |
? | 111 | 30 | 5 | 9 | 374 | –736 | |
80 | 58 | 56 | 636 | –474 | |||
+ | 111 | 44 | 19 | 16 | 736 | –474 | S(2,4,37) |
66 | 37 | 42 | 374 | –836 | |||
! | 112 | 30 | 2 | 10 | 290 | –1021 | unique by Cameron, Goethals & Seidel; subconstituent of McLaughlin graph; q222=0; O–(6,3) polar graph; GQ(3,9) |
81 | 60 | 54 | 921 | –390 | q111=0 | ||
? | 112 | 36 | 10 | 12 | 463 | –648 | pg(6,5,2)? |
75 | 50 | 50 | 548 | –563 | |||
+ | 113 | 56 | 27 | 28 | 4.81556 | –5.81556 | Paley(113); 2-graph\* |
? | 115 | 18 | 1 | 3 | 369 | –545 | |
96 | 80 | 80 | 445 | –469 | |||
+ | 117 | 36 | 15 | 9 | 926 | –390 | S(2,3,27); NO+(6,3); Lines in AG(3,3) (rk 4); Wallis (AR(3,1)+S(2,4,13)) |
80 | 52 | 60 | 290 | –1026 | pg(8,9,6)? | ||
? | 117 | 58 | 28 | 29 | 4.90858 | –5.90858 | 2-graph\*? |
+ | 119 | 54 | 21 | 27 | 384 | –934 | O–(8,2) polar graph; pg(6,8,3)?; 2-graph\* |
64 | 36 | 32 | 834 | –484 | 2-graph\* | ||
! | 120 | 28 | 14 | 4 | 1215 | –2104 | Triangular graph T(16) |
91 | 66 | 78 | 1104 | –1315 | pg(7,12,6)? | ||
? | 120 | 34 | 8 | 10 | 468 | –651 | |
85 | 60 | 60 | 551 | –568 | |||
? | 120 | 35 | 10 | 10 | 556 | –563 | pg(7,4,2) does not exist (Azarija-Marc for line graph) |
84 | 58 | 60 | 463 | –656 | |||
! | 120 | 42 | 8 | 18 | 299 | –1220 | L(3,4).2^2 on Baer subplanes (rk 4), unique by Degraer & Coolsaet |
77 | 52 | 44 | 1120 | –399 | Witt: intersection-3 graph of a quasisymmetric 2-(21,7,12) design with intersection numbers 1, 3 | ||
+ | 120 | 51 | 18 | 24 | 385 | –934 | NO–(5,4); 2-graph |
68 | 40 | 36 | 834 | –485 | from 2-(15,3,1) with 1-factor Fickus et al.; 2-graph | ||
+ | 120 | 56 | 28 | 24 | 835 | –484 | Wallis (AR(2,2)+S(2,3,15)); 2-graph |
63 | 30 | 36 | 384 | –935 | dist. 2 in J(10,3) - Mathon; NO+(8,2); Goethals-Seidel(3,7); pg(7,8,4) - Cohen; see also De Clerck & Delanote; 2-graph | ||
! | 121 | 20 | 9 | 2 | 920 | –2100 | 112 |
100 | 81 | 90 | 1100 | –1020 | OA(11,10) | ||
+ | 121 | 30 | 11 | 6 | 830 | –390 | OA(11,3) |
90 | 65 | 72 | 290 | –930 | OA(11,9) | ||
? | 121 | 36 | 7 | 12 | 384 | –836 | |
84 | 59 | 56 | 736 | –484 | |||
+ | 121 | 40 | 15 | 12 | 740 | –480 | OA(11,4) |
80 | 51 | 56 | 380 | –840 | OA(11,8) | ||
? | 121 | 48 | 17 | 20 | 472 | –748 | |
72 | 43 | 42 | 648 | –572 | |||
+ | 121 | 50 | 21 | 20 | 650 | –570 | OA(11,5); Pasechnik(11) |
70 | 39 | 42 | 470 | –750 | OA(11,7) | ||
- | 121 | 56 | 15 | 35 | 1112 | –218 | Absolute bound |
64 | 42 | 24 | 208 | –2112 | Absolute bound | ||
+ | 121 | 60 | 29 | 30 | 560 | –660 | Paley(121); OA(11,6); 2-graph\* |
+ | 122 | 55 | 24 | 25 | 561 | –660 | switch OA(11,6)+*; switch skewhad2+*; 2-graph |
66 | 35 | 36 | 560 | –661 | S(2,6,61)?; 2-graph | ||
+ | 125 | 28 | 3 | 7 | 384 | –740 | Godsil(q=5,r=3); GQ(4,6) |
96 | 74 | 72 | 640 | –484 | |||
- | 125 | 48 | 28 | 12 | 1810 | –2114 | Absolute bound |
76 | 39 | 57 | 1114 | –1910 | Absolute bound | ||
+ | 125 | 52 | 15 | 26 | 2104 | –1320 | Godsil(q=5,r=2); pg(4,12,2)?; 2-graph\* |
72 | 45 | 36 | 1220 | –3104 | 2-graph\* | ||
+ | 125 | 62 | 30 | 31 | 5.09062 | –6.09062 | Paley(125); 2-graph\* |
+ | 126 | 25 | 8 | 4 | 735 | –390 | dist. 1 or 4 in J(9,4) - Mathon, Buekenhout \& Hubaut |
100 | 78 | 84 | 290 | –835 | |||
+ | 126 | 45 | 12 | 18 | 390 | –935 | NO–(6,3); pg(5,8,2)? |
80 | 52 | 48 | 835 | –490 | |||
! | 126 | 50 | 13 | 24 | 2105 | –1320 | Goethals - unique by Coolsaet & Degraer; 2-graph |
75 | 48 | 39 | 1220 | –3105 | 2-graph | ||
+ | 126 | 60 | 33 | 24 | 1221 | –3104 | 2-graph |
65 | 28 | 39 | 2104 | –1321 | pg(5,12,3)?; Taylor 2-graph for U3(5) | ||
- | 129 | 64 | 31 | 32 | 5.17964 | –6.17964 | Conf |
+ | 130 | 48 | 20 | 16 | 839 | –490 | S(2,4,40); lines in PG(3,3); O+(6,3) |
81 | 48 | 54 | 390 | –939 | pg(9,8,6)? | ||
? | 133 | 24 | 5 | 4 | 556 | –476 | GQ(6,3) does not exist (Dixmier & Zara) |
108 | 87 | 90 | 376 | –656 | |||
? | 133 | 32 | 6 | 8 | 476 | –656 | |
100 | 75 | 75 | 556 | –576 | |||
? | 133 | 44 | 15 | 14 | 656 | –576 | |
88 | 57 | 60 | 476 | –756 | |||
- | 133 | 66 | 32 | 33 | 5.26666 | –6.26666 | Conf |
+ | 135 | 64 | 28 | 32 | 484 | –850 | pg(8,7,4) - Cohen; see also De Clerck & Delanote; 2-graph\* |
70 | 37 | 35 | 750 | –584 | O+(8,2); from ETF Fickus et al.; 2-graph\* | ||
? | 136 | 30 | 8 | 6 | 651 | –484 | |
105 | 80 | 84 | 384 | –751 | |||
! | 136 | 30 | 15 | 4 | 1316 | –2119 | Triangular graph T(17) |
105 | 78 | 91 | 1119 | –1416 | |||
+ | 136 | 60 | 24 | 28 | 485 | –850 | 2-graph |
75 | 42 | 40 | 750 | –585 | NO+(5,4); from ETF Fickus et al.; 2-graph | ||
+ | 136 | 63 | 30 | 28 | 751 | –584 | NO–(8,2); 2-graph |
72 | 36 | 40 | 484 | –851 | 2-graph | ||
+ | 137 | 68 | 33 | 34 | 5.35268 | –6.35268 | Paley(137); 2-graph\* |
- | 141 | 70 | 34 | 35 | 5.43770 | –6.43770 | Conf |
+ | 143 | 70 | 33 | 35 | 577 | –765 | intersection-18 graph of a quasisymmetric 2-(78,36,30) design with intersection numbers 15, 18; pg(10,6,5)?; 2-graph\* |
72 | 36 | 36 | 665 | –677 | S(2,6,66); intersection-15 graph of a quasisymmetric 2-(66,30,29) design with intersection numbers 12, 15; 2-graph\* | ||
! | 144 | 22 | 10 | 2 | 1022 | –2121 | 122 |
121 | 100 | 110 | 1121 | –1122 | OA(12,11)? | ||
+ | 144 | 33 | 12 | 6 | 933 | –3110 | OA(12,3) |
110 | 82 | 90 | 2110 | –1033 | OA(12,10)? | ||
+ | 144 | 39 | 6 | 12 | 3104 | –939 | L3(3) (rk 8) |
104 | 76 | 72 | 839 | –4104 | |||
+ | 144 | 44 | 16 | 12 | 844 | –499 | OA(12,4) |
99 | 66 | 72 | 399 | –944 | OA(12,9)? | ||
? | 144 | 52 | 16 | 20 | 491 | –852 | |
91 | 58 | 56 | 752 | –591 | |||
+ | 144 | 55 | 22 | 20 | 755 | –588 | OA(12,5) |
88 | 52 | 56 | 488 | –855 | OA(12,8)? | ||
- | 144 | 65 | 16 | 40 | 1135 | –258 | Krein2; Absolute bound |
78 | 52 | 30 | 248 | –2135 | Krein1; Absolute bound | ||
+ | 144 | 65 | 28 | 30 | 578 | –765 | RSHCD–; 2-graph |
78 | 42 | 42 | 665 | –678 | from 2-(12,2,1) with 1-factor Fickus et al.; 2-graph | ||
+ | 144 | 66 | 30 | 30 | 666 | –677 | OA(12,6); Wallis (AR(2,3)+S(2,2,12)); RSHCD+; 2-graph |
77 | 40 | 42 | 577 | –766 | OA(12,7); Wallis2 (AR(2,3)+S(2,2,12)); Goethals-Seidel(2,11); 2-graph | ||
? | 145 | 72 | 35 | 36 | 5.52172 | –6.52172 | 2-graph\*? |
? | 147 | 66 | 25 | 33 | 3110 | –1136 | pg(6,10,3)?; 2-graph\*? |
80 | 46 | 40 | 1036 | –4110 | 2-graph\*? | ||
? | 148 | 63 | 22 | 30 | 3111 | –1136 | 2-graph? |
84 | 50 | 44 | 1036 | –4111 | 2-graph? | ||
? | 148 | 70 | 36 | 30 | 1037 | –4110 | 2-graph? |
77 | 36 | 44 | 3110 | –1137 | 2-graph? | ||
+ | 149 | 74 | 36 | 37 | 5.60374 | –6.60374 | Paley(149); 2-graph\* |