| | v | k | λ | μ |
rf | sg | comments |
| + | 53 | 26 | 12 | 13 | 3.14026 | –4.14026 |
Paley(53); 2-graph\* |
| ! | 55 | 18 | 9 | 4 | 710 | –244 |
Triangular graph T(11) |
| | | 36 | 21 | 28 | 144 | –810 |
|
| ! | 56 | 10 | 0 | 2 | 235 | –420 |
Sims-Gewirtz graph; L3(4).22 / Alt(6).22; unique by Gewirtz; Cossidente-Penttila hemisystem in PG(3,32) |
| | | 45 | 36 | 36 | 320 | –335 |
Witt: intersection-2 graph of a quasisymmetric 2-(21,6,4) design with intersection numbers 0, 2 |
| - | 56 | 22 | 3 | 12 | 148 | –107 |
Krein2; Absolute bound |
| | | 33 | 22 | 15 | 97 | –248 |
Krein1; Absolute bound |
| - | 57 | 14 | 1 | 4 | 238 | –518 |
Wilbrink-Brouwer |
| | | 42 | 31 | 30 | 418 | –338 |
|
| + | 57 | 24 | 11 | 9 | 518 | –338 |
S(2,3,19) |
| | | 32 | 16 | 20 | 238 | –618 |
|
| - | 57 | 28 | 13 | 14 | 3.27528 | –4.27528 |
Conf |
| + | 61 | 30 | 14 | 15 | 3.40530 | –4.40530 |
Paley(61); Martin-Williford; 2-graph\* |
| - | 63 | 22 | 1 | 11 | 155 | –117 |
Krein2; Absolute bound |
| | | 40 | 28 | 20 | 107 | –255 |
Krein1; Absolute bound |
| + | 63 | 30 | 13 | 15 | 335 | –527 |
intersection-8 graph of a quasisymmetric 2-(36,16,12) design with intersection numbers 6, 8; O(7,2) Sp(6,2); pg(6,4,3); 2-graph\* |
| | | 32 | 16 | 16 | 427 | –435 |
S(2,4,28); intersection-6 graph of a quasisymmetric 2-(28,12,11) design with intersection numbers 4, 6; NU(3,3); 2-graph\* |
| ! | 64 | 14 | 6 | 2 | 614 | –249 |
82; from a partial spread of 3-spaces: projective binary [14,6] code with weights 4, 8 |
| | | 49 | 36 | 42 | 149 | –714 |
OA(8,7) |
| 167! | 64 | 18 | 2 | 6 | 245 | –618 |
complete enumeration by Haemers & Spence; GQ(3,5); from a hyperoval: projective 4-ary [6,3] code with weights 4, 6; Momihara: projective binary [18,6] code with weights 8, 12 |
| | | 45 | 32 | 30 | 518 | –345 |
|
| - | 64 | 21 | 0 | 10 | 156 | –117 |
Krein2; Absolute bound |
| | | 42 | 30 | 22 | 107 | –256 |
Krein1; Absolute bound |
| + | 64 | 21 | 8 | 6 | 521 | –342 |
OA(8,3); Bilin2x3(2); vanLint-Schrijver(1); from a Baer subplane: projective 4-ary [7,3] code with weights 4, 6; Brouwer(q=2,d=2,e=3,+); from a partial spread of 3-spaces: projective binary [21,6] code with weights 8, 12 |
| | | 42 | 26 | 30 | 242 | –621 |
OA(8,6); vanLint-Schrijver(2); Momihara |
| + | 64 | 27 | 10 | 12 | 336 | –527 |
Mesner; from a unital: projective 4-ary [9,3] code with weights 6, 8; VO–(6,2) affine polar graph; RSHCD–; 2-graph |
| | | 36 | 20 | 20 | 427 | –436 |
from 2-(8,2,1) with 1-factor Fickus et al.; 2-graph |
| + | 64 | 28 | 12 | 12 | 428 | –435 |
OA(8,4); Wallis (AR(2,2)+S(2,2,8)); from a partial spread of 3-spaces: projective binary [28,6] code with weights 12, 16; RSHCD+; 2-graph |
| | | 35 | 18 | 20 | 335 | –528 |
OA(8,5); Wallis2 (AR(2,2)+S(2,2,8)); Goethals-Seidel(2,7); VO+(6,2) affine polar graph; 2-graph |
| - | 64 | 30 | 18 | 10 | 108 | –255 |
Absolute bound |
| | | 33 | 12 | 22 | 155 | –118 |
Absolute bound |
| + | 65 | 32 | 15 | 16 | 3.53132 | –4.53132 |
Gritsenko; 2-graph\* |
| ! | 66 | 20 | 10 | 4 | 811 | –254 |
Triangular graph T(12) |
| | | 45 | 28 | 36 | 154 | –911 |
pg(5,8,4) does not exist (Lam et al.) |
| ? | 69 | 20 | 7 | 5 | 523 | –345 |
|
| | | 48 | 32 | 36 | 245 | –623 |
S(2,6,46) does not exist |
| - | 69 | 34 | 16 | 17 | 3.65334 | –4.65334 |
Conf |
| + | 70 | 27 | 12 | 9 | 620 | –349 |
S(2,3,21) |
| | | 42 | 23 | 28 | 249 | –720 |
pg(6,6,4)? |
| + | 73 | 36 | 17 | 18 | 3.77236 | –4.77236 |
Paley(73); 2-graph\* |
| - | 75 | 32 | 10 | 16 | 256 | –818 |
Azarija-Marc |
| | | 42 | 25 | 21 | 718 | –356 |
|
| - | 76 | 21 | 2 | 7 | 256 | –719 |
Haemers |
| | | 54 | 39 | 36 | 619 | –356 |
|
| - | 76 | 30 | 8 | 14 | 257 | –818 |
Bondarenko, Prymak & Radchenko |
| | | 45 | 28 | 24 | 718 | –357 |
|
| - | 76 | 35 | 18 | 14 | 719 | –356 |
|
| | | 40 | 18 | 24 | 256 | –819 |
no 2-graph\* |
| ! | 77 | 16 | 0 | 4 | 255 | –621 |
S(3,6,22); M22/24:Sym(6); Mesner; unique by Brouwer; intersection-6 graph of a quasisymmetric 2-(56,16,6) design with intersection numbers 4, 6 |
| | | 60 | 47 | 45 | 521 | –355 |
Witt 3-(22,6,1): intersection-2 graph of a quasisymmetric 2-(22,6,5) design with intersection numbers 0, 2 |
| - | 77 | 38 | 18 | 19 | 3.88738 | –4.88738 |
Conf |
| ! | 78 | 22 | 11 | 4 | 912 | –265 |
Triangular graph T(13) |
| | | 55 | 36 | 45 | 165 | –1012 |
|
| ! | 81 | 16 | 7 | 2 | 716 | –264 |
92; vanLint-Schrijver(1); Brouwer(q=3,d=2,e=2,+); from a partial spread: projective ternary [8,4] code with weights 3, 6 |
| | | 64 | 49 | 56 | 164 | –816 |
OA(9,8); vanLint-Schrijver(4) |
| ! | 81 | 20 | 1 | 6 | 260 | –720 |
Mesner; unique by Brouwer & Haemers; VO–(4,3) affine polar graph; projective ternary [10,4] code with weights 6, 9 |
| | | 60 | 45 | 42 | 620 | –360 |
|
| + | 81 | 24 | 9 | 6 | 624 | –356 |
OA(9,3); Wallis (AR(3,1)+S(2,3,9)); VNO+(4,3) affine polar graph; from a partial spread: projective ternary [12,4] code with weights 6, 9 |
| | | 56 | 37 | 42 | 256 | –724 |
OA(9,7) |
| + | 81 | 30 | 9 | 12 | 350 | –630 |
Mesner; pg(5,5,2) - van Lint & Schrijver; VNO–(4,3) affine polar graph; Hamada-Helleseth: projective ternary [15,4] code with weights 9, 12 |
| | | 50 | 31 | 30 | 530 | –450 |
|
| + | 81 | 32 | 13 | 12 | 532 | –448 |
OA(9,4); Bilin2x2(3); vanLint-Schrijver(2); Wallis2 (AR(3,1)+S(2,3,9)); VO+(4,3) affine polar graph; from a partial spread: projective ternary [16,4] code with weights 9, 12 |
| | | 48 | 27 | 30 | 348 | –632 |
OA(9,6); vanLint-Schrijver(3) |
| - | 81 | 40 | 13 | 26 | 172 | –148 |
Absolute bound |
| | | 40 | 25 | 14 | 138 | –272 |
Absolute bound |
| + | 81 | 40 | 19 | 20 | 440 | –540 |
Paley(81); OA(9,5); 2-graph\* |
| + | 82 | 36 | 15 | 16 | 441 | –540 |
switch OA(9,5)+*; 2-graph |
| | | 45 | 24 | 25 | 440 | –541 |
S(2,5,41); 2-graph |
| - | 85 | 14 | 3 | 2 | 434 | –350 |
Shpectorov-Zhao |
| | | 70 | 57 | 60 | 250 | –534 |
|
| + | 85 | 20 | 3 | 5 | 350 | –534 |
O(5,4) Sp(4,4); GQ(4,4) |
| | | 64 | 48 | 48 | 434 | –450 |
|
| ? | 85 | 30 | 11 | 10 | 534 | –450 |
|
| | | 54 | 33 | 36 | 350 | –634 |
S(2,6,51)? |
| ? | 85 | 42 | 20 | 21 | 4.11042 | –5.11042 |
2-graph\*? |
| ? | 88 | 27 | 6 | 9 | 355 | –632 |
|
| | | 60 | 41 | 40 | 532 | –455 |
|
| + | 89 | 44 | 21 | 22 | 4.21744 | –5.21744 |
Paley(89); Martin-Williford; 2-graph\* |
| ! | 91 | 24 | 12 | 4 | 1013 | –277 |
Triangular graph T(14) |
| | | 66 | 45 | 55 | 177 | –1113 |
pg(6,10,5)? |
| - | 93 | 46 | 22 | 23 | 4.32246 | –5.32246 |
Conf |
| - | 95 | 40 | 12 | 20 | 275 | –1019 |
Azarija-Marc |
| | | 54 | 33 | 27 | 919 | –375 |
|
| + | 96 | 19 | 2 | 4 | 357 | –538 |
Haemers(4); Muzychuk S6 (n=4,d=2); Brouwer-Koolen-Klin; Golemac et al. |
| | | 76 | 60 | 60 | 438 | –457 |
|
| + | 96 | 20 | 4 | 4 | 445 | –450 |
Wallis (AR(4,1)+S(2,2,6)); GQ(5,3); Brouwer-Koolen-Klin; Golemac et al. |
| | | 75 | 58 | 60 | 350 | –545 |
|
| ? | 96 | 35 | 10 | 14 | 363 | –732 |
pg(5,6,2)? |
| | | 60 | 38 | 36 | 632 | –463 |
|
| - | 96 | 38 | 10 | 18 | 276 | –1019 |
Degraer |
| | | 57 | 36 | 30 | 919 | –376 |
|
| - | 96 | 45 | 24 | 18 | 920 | –375 |
|
| | | 50 | 22 | 30 | 275 | –1020 |
no 2-graph\* |
| + | 97 | 48 | 23 | 24 | 4.42448 | –5.42448 |
Paley(97); 2-graph\* |
| ? | 99 | 14 | 1 | 2 | 354 | –444 |
|
| | | 84 | 71 | 72 | 344 | –454 |
|
| ? | 99 | 42 | 21 | 15 | 921 | –377 |
|
| | | 56 | 28 | 36 | 277 | –1021 |
|
| + | 99 | 48 | 22 | 24 | 454 | –644 |
pg(8,5,4) does not exist (Lam et al.); 2-graph\* |
| | | 50 | 25 | 25 | 544 | –554 |
S(2,5,45); 2-graph\* |
| ! | 100 | 18 | 8 | 2 | 818 | –281 |
102 |
| | | 81 | 64 | 72 | 181 | –918 |
|
| ! | 100 | 22 | 0 | 6 | 277 | –822 |
HS.2 / M22.2 - Mesner; Higman-Sims; unique by Gewirtz; q222=0 |
| | | 77 | 60 | 56 | 722 | –377 |
q111=0 |
| + | 100 | 27 | 10 | 6 | 727 | –372 |
OA(10,3) |
| | | 72 | 50 | 56 | 272 | –827 |
OA(10,8)? |
| ? | 100 | 33 | 8 | 12 | 366 | –733 |
|
| | | 66 | 44 | 42 | 633 | –466 |
|
| + | 100 | 33 | 14 | 9 | 824 | –375 |
S(2,3,25) |
| | | 66 | 41 | 48 | 275 | –924 |
|
| - | 100 | 33 | 18 | 7 | 1311 | –288 |
Absolute bound |
| | | 66 | 39 | 52 | 188 | –1411 |
Absolute bound |
| + | 100 | 36 | 14 | 12 | 636 | –463 |
J2.2 / U3(3).2 - Hall-Janko; OA(10,4) |
| | | 63 | 38 | 42 | 363 | –736 |
OA(10,7)? |
| + | 100 | 44 | 18 | 20 | 455 | –644 |
Jørgensen-Klin; RSHCD–; 2-graph |
| | | 55 | 30 | 30 | 544 | –555 |
2-graph |
| + | 100 | 45 | 20 | 20 | 545 | –554 |
OA(10,5)?; RSHCD+; 2-graph |
| | | 54 | 28 | 30 | 454 | –645 |
OA(10,6)?; 2-graph |