v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
? | 851 | 306 | 97 | 117 | 7666 | –27184 | |
544 | 354 | 336 | 26184 | –8666 | |||
? | 851 | 360 | 163 | 144 | 27184 | –8666 | |
490 | 273 | 294 | 7666 | –28184 | |||
+ | 853 | 426 | 212 | 213 | 14.103426 | –15.103426 | Paley(853); 2-graph\* |
? | 855 | 126 | 21 | 18 | 12360 | –9494 | pg(14,8,2)? |
728 | 619 | 624 | 8494 | –13360 | |||
? | 855 | 168 | 20 | 36 | 6665 | –22189 | |
686 | 553 | 539 | 21189 | –7665 | |||
? | 855 | 182 | 37 | 39 | 11455 | –13399 | pg(14,12,3)? |
672 | 528 | 528 | 12399 | –12455 | |||
? | 855 | 294 | 93 | 105 | 9588 | –21266 | pg(14,20,5)? |
560 | 370 | 360 | 20266 | –10588 | |||
? | 855 | 336 | 150 | 120 | 36114 | –6740 | |
518 | 301 | 333 | 5740 | –37114 | pg(14,36,9)? | ||
? | 856 | 95 | 6 | 11 | 7535 | –12320 | |
760 | 675 | 672 | 11320 | –8535 | |||
? | 856 | 120 | 21 | 16 | 13320 | –8535 | pg(15,7,2)? |
735 | 630 | 637 | 7535 | –14320 | |||
? | 856 | 209 | 72 | 44 | 33107 | –5748 | |
646 | 480 | 510 | 4748 | –34107 | |||
+ | 857 | 428 | 213 | 214 | 14.137428 | –15.137428 | Paley(857); 2-graph\* |
! | 861 | 80 | 40 | 4 | 3841 | –2819 | Triangular graph T(42) |
780 | 703 | 741 | 1819 | –3941 | pg(20,38,19)? | ||
? | 861 | 140 | 31 | 21 | 17245 | –7615 | pg(20,6,3)? |
720 | 600 | 612 | 6615 | –18245 | |||
? | 861 | 280 | 105 | 84 | 28164 | –7696 | |
580 | 383 | 406 | 6696 | –29164 | pg(20,28,14)? | ||
? | 861 | 300 | 103 | 105 | 13450 | –15410 | pg(20,14,7)? |
560 | 364 | 364 | 14410 | –14450 | |||
? | 861 | 380 | 163 | 171 | 11532 | –19328 | pg(20,18,9)? |
480 | 270 | 264 | 18328 | –12532 | |||
- | 861 | 430 | 214 | 215 | 14.171430 | –15.171430 | Conf |
? | 865 | 432 | 215 | 216 | 14.205432 | –15.205432 | 2-graph\*? |
? | 867 | 416 | 190 | 208 | 8650 | –26216 | pg(16,25,8)?; 2-graph\*? |
450 | 241 | 225 | 25216 | –9650 | 2-graph\*? | ||
? | 868 | 300 | 110 | 100 | 20279 | –10588 | S(2,10,280)? |
567 | 366 | 378 | 9588 | –21279 | pg(27,20,18)? | ||
? | 868 | 408 | 182 | 200 | 8651 | –26216 | 2-graph? |
459 | 250 | 234 | 25216 | –9651 | 2-graph? | ||
? | 868 | 425 | 216 | 200 | 25217 | –9650 | 2-graph? |
442 | 216 | 234 | 8650 | –26217 | 2-graph? | ||
- | 869 | 434 | 216 | 217 | 14.239434 | –15.239434 | Conf |
? | 870 | 165 | 36 | 30 | 15319 | –9550 | |
704 | 568 | 576 | 8550 | –16319 | |||
- | 870 | 316 | 161 | 88 | 7629 | –3840 | Absolute bound |
553 | 324 | 399 | 2840 | –7729 | Absolute bound | ||
? | 871 | 60 | 5 | 4 | 8402 | –7468 | |
810 | 753 | 756 | 6468 | –9402 | |||
? | 871 | 144 | 22 | 24 | 10468 | –12402 | pg(12,11,2)? |
726 | 605 | 605 | 11402 | –11468 | |||
? | 871 | 348 | 137 | 140 | 13468 | –16402 | |
522 | 313 | 312 | 15402 | –14468 | |||
? | 872 | 208 | 54 | 48 | 16327 | –10544 | |
663 | 502 | 510 | 9544 | –17327 | |||
? | 873 | 436 | 217 | 218 | 14.273436 | –15.273436 | 2-graph\*? |
- | 875 | 46 | 9 | 2 | 11230 | –4644 | μ=2 (Brouwer-Neumaier) |
828 | 783 | 792 | 3644 | –12230 | |||
? | 875 | 114 | 13 | 15 | 9475 | –11399 | |
760 | 660 | 660 | 10399 | –10475 | |||
? | 875 | 184 | 33 | 40 | 9552 | –16322 | |
690 | 545 | 540 | 15322 | –10552 | |||
? | 875 | 190 | 45 | 40 | 15342 | –10532 | |
684 | 533 | 540 | 9532 | –16342 | |||
? | 875 | 304 | 78 | 120 | 4798 | –4676 | |
570 | 385 | 345 | 4576 | –5798 | |||
? | 875 | 322 | 105 | 126 | 7690 | –28184 | |
552 | 355 | 336 | 27184 | –8690 | |||
? | 875 | 342 | 145 | 126 | 27190 | –8684 | |
532 | 315 | 336 | 7684 | –28190 | pg(19,27,12)? | ||
? | 875 | 432 | 210 | 216 | 12510 | –18364 | pg(24,17,12)?; 2-graph\*? |
442 | 225 | 221 | 17364 | –13510 | 2-graph\*? | ||
+ | 876 | 105 | 38 | 9 | 3272 | –3803 | S(2,3,73) |
770 | 673 | 704 | 2803 | –3372 | |||
? | 876 | 280 | 92 | 88 | 16365 | –12510 | |
595 | 402 | 408 | 11510 | –17365 | |||
? | 876 | 420 | 198 | 204 | 12511 | –18364 | 2-graph? |
455 | 238 | 234 | 17364 | –13511 | 2-graph? | ||
? | 876 | 425 | 208 | 204 | 17365 | –13510 | 2-graph? |
450 | 228 | 234 | 12510 | –18365 | 2-graph? | ||
+ | 877 | 438 | 218 | 219 | 14.307438 | –15.307438 | Paley(877); 2-graph\* |
? | 880 | 270 | 66 | 90 | 6725 | –30154 | pg(9,29,3)? |
609 | 428 | 406 | 29154 | –7725 | |||
? | 880 | 294 | 98 | 98 | 14429 | –14450 | pg(21,13,7)? |
585 | 388 | 390 | 13450 | –15429 | |||
+ | 881 | 440 | 219 | 220 | 14.341440 | –15.341440 | Paley(881); 2-graph\* |
- | 885 | 180 | 3 | 45 | 3825 | –4559 | Krein2 |
704 | 568 | 528 | 4459 | –4825 | Krein1 | ||
? | 885 | 260 | 55 | 85 | 5767 | –35117 | |
624 | 448 | 420 | 34117 | –6767 | |||
- | 885 | 442 | 220 | 221 | 14.374442 | –15.374442 | Conf |
? | 889 | 222 | 35 | 62 | 5762 | –32126 | |
666 | 505 | 480 | 31126 | –6762 | |||
? | 889 | 288 | 112 | 84 | 34126 | –6762 | |
600 | 395 | 425 | 5762 | –35126 | |||
- | 889 | 444 | 221 | 222 | 14.408444 | –15.408444 | Conf |
+ | 891 | 90 | 9 | 9 | 9440 | –9450 | Wallis (AR(9,1)+S(2,2,11)); GQ(10,8) |
800 | 718 | 720 | 8450 | –10440 | |||
? | 891 | 290 | 109 | 87 | 29165 | –7725 | |
600 | 396 | 420 | 6725 | –30165 | |||
? | 891 | 320 | 148 | 96 | 5654 | –4836 | |
570 | 345 | 399 | 3836 | –5754 | pg(10,56,7)? | ||
? | 891 | 390 | 189 | 156 | 39110 | –6780 | |
500 | 265 | 300 | 5780 | –40110 | |||
- | 893 | 192 | 16 | 48 | 4798 | –3694 | Krein2 |
700 | 555 | 525 | 3594 | –5798 | Krein1 | ||
- | 893 | 446 | 222 | 223 | 14.442446 | –15.442446 | Conf |
? | 894 | 304 | 86 | 112 | 6744 | –32149 | |
589 | 396 | 372 | 31149 | –7744 | |||
? | 896 | 180 | 36 | 36 | 12440 | –12455 | pg(15,11,3)? |
715 | 570 | 572 | 11455 | –13440 | |||
? | 896 | 220 | 84 | 44 | 4470 | –4825 | |
675 | 498 | 540 | 3825 | –4570 | pg(15,44,12)? | ||
? | 896 | 385 | 180 | 154 | 33147 | –7748 | |
510 | 278 | 306 | 6748 | –34147 | pg(15,33,9)? | ||
? | 897 | 126 | 15 | 18 | 9506 | –12390 | |
770 | 661 | 660 | 11390 | –10506 | |||
- | 897 | 448 | 223 | 224 | 14.475448 | –15.475448 | Conf |
+ | 899 | 448 | 222 | 224 | 14464 | –16434 | pg(28,15,14)?; 2-graph\* |
450 | 225 | 225 | 15434 | –15464 | S(2,15,435)?; 2-graph\* | ||
! | 900 | 58 | 28 | 2 | 2858 | –2841 | 302 |
841 | 784 | 812 | 1841 | –2958 | OA(30,29)? | ||
+ | 900 | 87 | 30 | 6 | 2787 | –3812 | OA(30,3) |
812 | 730 | 756 | 2812 | –2887 | OA(30,28)? | ||
+ | 900 | 116 | 34 | 12 | 26116 | –4783 | OA(30,4) |
783 | 678 | 702 | 3783 | –27116 | OA(30,27)? | ||
+ | 900 | 145 | 40 | 20 | 25145 | –5754 | OA(30,5) |
754 | 628 | 650 | 4754 | –26145 | OA(30,26)? | ||
? | 900 | 155 | 10 | 30 | 5744 | –25155 | |
744 | 618 | 600 | 24155 | –6744 | |||
+ | 900 | 174 | 48 | 30 | 24174 | –6725 | OA(30,6) |
725 | 580 | 600 | 5725 | –25174 | OA(30,25)? | ||
? | 900 | 186 | 24 | 42 | 6713 | –24186 | |
713 | 568 | 552 | 23186 | –7713 | |||
? | 900 | 203 | 34 | 49 | 7675 | –22224 | |
696 | 541 | 528 | 21224 | –8675 | |||
? | 900 | 203 | 58 | 42 | 23203 | –7696 | OA(30,7)? |
696 | 534 | 552 | 6696 | –24203 | OA(30,24)? | ||
? | 900 | 217 | 40 | 56 | 7682 | –23217 | |
682 | 520 | 506 | 22217 | –8682 | |||
? | 900 | 232 | 70 | 56 | 22232 | –8667 | OA(30,8)? |
667 | 490 | 506 | 7667 | –23232 | OA(30,23)? | ||
? | 900 | 248 | 58 | 72 | 8651 | –22248 | |
651 | 474 | 462 | 21248 | –9651 | |||
? | 900 | 248 | 79 | 64 | 23224 | –8675 | S(2,8,225)? |
651 | 466 | 483 | 7675 | –24224 | |||
? | 900 | 261 | 84 | 72 | 21261 | –9638 | OA(30,9)? |
638 | 448 | 462 | 8638 | –22261 | OA(30,22)? | ||
? | 900 | 279 | 78 | 90 | 9620 | –21279 | |
620 | 430 | 420 | 20279 | –10620 | |||
- | 900 | 290 | 37 | 120 | 2875 | –8524 | Krein2; Absolute bound |
609 | 438 | 357 | 8424 | –3875 | Krein1; Absolute bound | ||
? | 900 | 290 | 100 | 90 | 20290 | –10609 | OA(30,10)? |
609 | 408 | 420 | 9609 | –21290 | OA(30,21)? | ||
? | 900 | 310 | 100 | 110 | 10589 | –20310 | |
589 | 388 | 380 | 19310 | –11589 | |||
? | 900 | 319 | 118 | 110 | 19319 | –11580 | OA(30,11)? |
580 | 370 | 380 | 10580 | –20319 | OA(30,20)? | ||
- | 900 | 341 | 34 | 187 | 1891 | –1548 | Krein2; Absolute bound |
558 | 403 | 252 | 1538 | –2891 | Krein1; Absolute bound | ||
? | 900 | 341 | 124 | 132 | 11558 | –19341 | |
558 | 348 | 342 | 18341 | –12558 | |||
? | 900 | 348 | 138 | 132 | 18348 | –12551 | OA(30,12)? |
551 | 334 | 342 | 11551 | –19348 | OA(30,19)? | ||
? | 900 | 372 | 150 | 156 | 12527 | –18372 | |
527 | 310 | 306 | 17372 | –13527 | |||
? | 900 | 377 | 160 | 156 | 17377 | –13522 | OA(30,13)? |
522 | 300 | 306 | 12522 | –18377 | OA(30,18)? | ||
? | 900 | 403 | 178 | 182 | 13496 | –17403 | |
496 | 274 | 272 | 16403 | –14496 | |||
? | 900 | 406 | 184 | 182 | 16406 | –14493 | OA(30,14)? |
493 | 268 | 272 | 13493 | –17406 | OA(30,17)? | ||
- | 900 | 434 | 163 | 252 | 2875 | –9124 | Absolute bound |
465 | 282 | 195 | 9024 | –3875 | Absolute bound | ||
? | 900 | 434 | 208 | 210 | 14465 | –16434 | RSHCD–?; 2-graph? |
465 | 240 | 240 | 15434 | –15465 | 2-graph? | ||
+ | 900 | 435 | 210 | 210 | 15435 | –15464 | OA(30,15)?; RSHCD+; 2-graph |
464 | 238 | 240 | 14464 | –16435 | OA(30,16)?; 2-graph |