v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
? | 801 | 400 | 199 | 200 | 13.651400 | –14.651400 | 2-graph\*? |
? | 804 | 143 | 22 | 26 | 9468 | –13335 | pg(11,12,2)? |
660 | 542 | 540 | 12335 | –10468 | |||
? | 805 | 324 | 123 | 135 | 9552 | –21252 | |
480 | 290 | 280 | 20252 | –10552 | |||
? | 805 | 336 | 140 | 140 | 14390 | –14414 | |
468 | 271 | 273 | 13414 | –15390 | |||
- | 805 | 402 | 200 | 201 | 13.686402 | –14.686402 | Conf |
+ | 806 | 180 | 54 | 36 | 24155 | –6650 | S(2,6,156); lines in PG(3,5); O+(6,5) |
625 | 480 | 500 | 5650 | –25155 | pg(25,24,20)? | ||
+ | 809 | 404 | 201 | 202 | 13.721404 | –14.721404 | Paley(809); 2-graph\* |
? | 813 | 252 | 71 | 81 | 9542 | –19270 | |
560 | 388 | 380 | 18270 | –10542 | |||
? | 813 | 290 | 109 | 100 | 19270 | –10542 | S(2,10,271)? |
522 | 331 | 342 | 9542 | –20270 | |||
- | 813 | 406 | 202 | 203 | 13.757406 | –14.757406 | Conf |
? | 816 | 315 | 114 | 126 | 9560 | –21255 | pg(15,20,6)? |
500 | 310 | 300 | 20255 | –10560 | |||
? | 816 | 325 | 128 | 130 | 13425 | –15390 | |
490 | 294 | 294 | 14390 | –14425 | |||
? | 817 | 240 | 83 | 65 | 25171 | –7645 | |
576 | 400 | 420 | 6645 | –26171 | |||
- | 817 | 408 | 203 | 204 | 13.792408 | –14.792408 | Conf |
+ | 819 | 400 | 190 | 200 | 10532 | –20286 | pg(20,19,10)?; 2-graph\* |
418 | 217 | 209 | 19286 | –11532 | from ETF Fickus et al.; 2-graph\* | ||
! | 820 | 78 | 39 | 4 | 3740 | –2779 | Triangular graph T(41) |
741 | 666 | 703 | 1779 | –3840 | |||
+ | 820 | 90 | 8 | 10 | 8450 | –10369 | O(5,9) Sp(4,9); GQ(9,9) |
729 | 648 | 648 | 9369 | –9450 | |||
? | 820 | 147 | 18 | 28 | 7574 | –17245 | |
672 | 552 | 544 | 16245 | –8574 | |||
? | 820 | 182 | 48 | 38 | 18245 | –8574 | |
637 | 492 | 504 | 7574 | –19245 | |||
? | 820 | 210 | 35 | 60 | 5696 | –30123 | pg(7,29,2)? |
609 | 458 | 435 | 29123 | –6696 | |||
? | 820 | 234 | 68 | 66 | 14369 | –12450 | |
585 | 416 | 420 | 11450 | –15369 | |||
? | 820 | 315 | 122 | 120 | 15369 | –13450 | |
504 | 308 | 312 | 12450 | –16369 | |||
+ | 820 | 390 | 180 | 190 | 10533 | –20286 | 2-graph |
429 | 228 | 220 | 19286 | –11533 | from ETF Fickus et al.; 2-graph | ||
? | 820 | 399 | 198 | 190 | 19287 | –11532 | 2-graph? |
420 | 210 | 220 | 10532 | –20287 | 2-graph? | ||
+ | 821 | 410 | 204 | 205 | 13.827410 | –14.827410 | Paley(821); 2-graph\* |
? | 825 | 96 | 4 | 12 | 6572 | –14252 | |
728 | 643 | 637 | 13252 | –7572 | |||
+ | 825 | 128 | 40 | 16 | 2899 | –4725 | S(2,4,100) |
696 | 583 | 609 | 3725 | –2999 | pg(24,28,21) | ||
? | 825 | 280 | 75 | 105 | 5714 | –35110 | |
544 | 368 | 340 | 34110 | –6714 | |||
? | 825 | 320 | 130 | 120 | 20264 | –10560 | |
504 | 303 | 315 | 9560 | –21264 | pg(24,20,15)? | ||
? | 825 | 392 | 175 | 196 | 7648 | –28176 | pg(14,27,7)?; 2-graph\*? |
432 | 235 | 216 | 27176 | –8648 | 2-graph\*? | ||
- | 825 | 412 | 205 | 206 | 13.861412 | –14.861412 | Conf |
? | 826 | 105 | 8 | 14 | 7531 | –13294 | |
720 | 628 | 624 | 12294 | –8531 | |||
? | 826 | 132 | 26 | 20 | 14294 | –8531 | |
693 | 580 | 588 | 7531 | –15294 | |||
? | 826 | 385 | 168 | 189 | 7649 | –28176 | 2-graph? |
440 | 243 | 224 | 27176 | –8649 | 2-graph? | ||
? | 826 | 405 | 208 | 189 | 27177 | –8648 | 2-graph? |
420 | 203 | 224 | 7648 | –28177 | 2-graph? | ||
+ | 829 | 414 | 206 | 207 | 13.896414 | –14.896414 | Paley(829); 2-graph\* |
- | 832 | 210 | 2 | 70 | 2805 | –7026 | Krein2; Absolute bound |
621 | 480 | 414 | 6926 | –3805 | Krein1; Absolute bound | ||
? | 832 | 306 | 130 | 102 | 34117 | –6714 | |
525 | 320 | 350 | 5714 | –35117 | pg(15,34,10)? | ||
? | 833 | 112 | 21 | 14 | 14272 | –7560 | pg(16,6,2)? |
720 | 621 | 630 | 6560 | –15272 | |||
? | 833 | 130 | 21 | 20 | 11390 | –10442 | pg(13,9,2)? |
702 | 591 | 594 | 9442 | –12390 | |||
- | 833 | 208 | 117 | 30 | 8916 | –2816 | Absolute bound |
624 | 445 | 534 | 1816 | –9016 | Absolute bound | ||
? | 833 | 232 | 81 | 58 | 29136 | –6696 | |
600 | 425 | 450 | 5696 | –30136 | pg(20,29,15)? | ||
? | 833 | 256 | 84 | 76 | 18288 | –10544 | |
576 | 395 | 405 | 9544 | –19288 | |||
? | 833 | 416 | 207 | 208 | 13.931416 | –14.931416 | 2-graph\*? |
? | 836 | 160 | 24 | 32 | 8550 | –16285 | pg(10,15,2)? |
675 | 546 | 540 | 15285 | –9550 | |||
? | 836 | 375 | 190 | 150 | 4576 | –5759 | |
460 | 234 | 276 | 4759 | –4676 | pg(10,45,6)? | ||
? | 837 | 76 | 15 | 6 | 14216 | –5620 | |
760 | 689 | 700 | 4620 | –15216 | |||
? | 837 | 176 | 40 | 36 | 14341 | –10495 | |
660 | 519 | 525 | 9495 | –15341 | |||
? | 837 | 196 | 35 | 49 | 7620 | –21216 | |
640 | 492 | 480 | 20216 | –8620 | |||
- | 837 | 276 | 135 | 69 | 6931 | –3805 | Absolute bound |
560 | 352 | 420 | 2805 | –7031 | Absolute bound | ||
? | 837 | 286 | 85 | 104 | 7650 | –26186 | |
550 | 367 | 350 | 25186 | –8650 | |||
? | 837 | 308 | 127 | 105 | 29154 | –7682 | |
528 | 324 | 348 | 6682 | –30154 | |||
? | 837 | 396 | 195 | 180 | 24216 | –9620 | |
440 | 223 | 240 | 8620 | –25216 | |||
- | 837 | 418 | 208 | 209 | 13.965418 | –14.965418 | Conf |
! | 841 | 56 | 27 | 2 | 2756 | –2784 | 292 |
784 | 729 | 756 | 1784 | –2856 | OA(29,28) | ||
+ | 841 | 84 | 29 | 6 | 2684 | –3756 | OA(29,3) |
756 | 677 | 702 | 2756 | –2784 | OA(29,27) | ||
+ | 841 | 112 | 33 | 12 | 25112 | –4728 | OA(29,4) |
728 | 627 | 650 | 3728 | –26112 | OA(29,26) | ||
+ | 841 | 140 | 39 | 20 | 24140 | –5700 | OA(29,5) |
700 | 579 | 600 | 4700 | –25140 | OA(29,25) | ||
? | 841 | 150 | 11 | 30 | 5690 | –24150 | |
690 | 569 | 552 | 23150 | –6690 | |||
+ | 841 | 168 | 47 | 30 | 23168 | –6672 | OA(29,6) |
672 | 533 | 552 | 5672 | –24168 | OA(29,24) | ||
? | 841 | 180 | 25 | 42 | 6660 | –23180 | |
660 | 521 | 506 | 22180 | –7660 | |||
+ | 841 | 196 | 57 | 42 | 22196 | –7644 | OA(29,7) |
644 | 489 | 506 | 6644 | –23196 | OA(29,23) | ||
- | 841 | 200 | 87 | 35 | 5540 | –3800 | Abs+Neumaier |
640 | 474 | 528 | 2800 | –5640 | Abs+Neumaier | ||
? | 841 | 210 | 41 | 56 | 7630 | –22210 | |
630 | 475 | 462 | 21210 | –8630 | |||
+ | 841 | 224 | 69 | 56 | 21224 | –8616 | OA(29,8) |
616 | 447 | 462 | 7616 | –22224 | OA(29,22) | ||
? | 841 | 240 | 59 | 72 | 8600 | –21240 | |
600 | 431 | 420 | 20240 | –9600 | |||
+ | 841 | 252 | 83 | 72 | 20252 | –9588 | OA(29,9) |
588 | 407 | 420 | 8588 | –21252 | OA(29,21) | ||
- | 841 | 264 | 47 | 99 | 3792 | –5548 | Krein2 |
576 | 410 | 360 | 5448 | –4792 | Krein1 | ||
? | 841 | 270 | 79 | 90 | 9570 | –20270 | |
570 | 389 | 380 | 19270 | –10570 | |||
+ | 841 | 280 | 99 | 90 | 19280 | –10560 | OA(29,10) |
560 | 369 | 380 | 9560 | –20280 | OA(29,20) | ||
- | 841 | 288 | 172 | 60 | 11412 | –2828 | Absolute bound |
552 | 323 | 437 | 1828 | –11512 | Absolute bound | ||
? | 841 | 300 | 101 | 110 | 10540 | –19300 | |
540 | 349 | 342 | 18300 | –11540 | |||
+ | 841 | 308 | 117 | 110 | 18308 | –11532 | OA(29,11) |
532 | 333 | 342 | 10532 | –19308 | OA(29,19) | ||
- | 841 | 320 | 33 | 176 | 1832 | –1448 | Krein2; Absolute bound |
520 | 375 | 234 | 1438 | –2832 | Krein1; Absolute bound | ||
? | 841 | 330 | 125 | 132 | 11510 | –18330 | |
510 | 311 | 306 | 17330 | –12510 | |||
+ | 841 | 336 | 137 | 132 | 17336 | –12504 | OA(29,12) |
504 | 299 | 306 | 11504 | –18336 | OA(29,18) | ||
? | 841 | 360 | 151 | 156 | 12480 | –17360 | |
480 | 275 | 272 | 16360 | –13480 | |||
+ | 841 | 364 | 159 | 156 | 16364 | –13476 | OA(29,13) |
476 | 267 | 272 | 12476 | –17364 | OA(29,17) | ||
? | 841 | 390 | 179 | 182 | 13450 | –16390 | |
450 | 241 | 240 | 15390 | –14450 | |||
+ | 841 | 392 | 183 | 182 | 15392 | –14448 | OA(29,14) |
448 | 237 | 240 | 13448 | –16392 | OA(29,16) | ||
- | 841 | 408 | 155 | 238 | 2816 | –8524 | Absolute bound |
432 | 261 | 180 | 8424 | –3816 | Absolute bound | ||
+ | 841 | 420 | 209 | 210 | 14420 | –15420 | Paley(841); OA(29,15); 2-graph\* |
+ | 842 | 406 | 195 | 196 | 14421 | –15420 | switch OA(29,15)+*; 2-graph |
435 | 224 | 225 | 14420 | –15421 | S(2,15,421)?; 2-graph | ||
? | 845 | 204 | 43 | 51 | 9544 | –17300 | pg(12,16,3)? |
640 | 486 | 480 | 16300 | –10544 | |||
? | 845 | 256 | 108 | 64 | 4860 | –4784 | |
588 | 395 | 441 | 3784 | –4960 | pg(12,48,9)? | ||
? | 845 | 396 | 171 | 198 | 6704 | –33140 | pg(12,32,6)?; 2-graph\*? |
448 | 249 | 224 | 32140 | –7704 | 2-graph\*? | ||
? | 845 | 422 | 210 | 211 | 14.034422 | –15.034422 | 2-graph\*? |
? | 846 | 169 | 24 | 36 | 7611 | –19234 | |
676 | 542 | 532 | 18234 | –8611 | |||
? | 846 | 208 | 60 | 48 | 20234 | –8611 | |
637 | 476 | 490 | 7611 | –21234 | |||
? | 846 | 260 | 70 | 84 | 8611 | –22234 | |
585 | 408 | 396 | 21234 | –9611 | |||
- | 846 | 285 | 60 | 114 | 3798 | –5747 | Krein2 |
560 | 388 | 336 | 5647 | –4798 | Krein1 | ||
? | 846 | 390 | 165 | 192 | 6705 | –33140 | 2-graph? |
455 | 256 | 231 | 32140 | –7705 | 2-graph? | ||
? | 846 | 416 | 217 | 192 | 32141 | –7704 | 2-graph? |
429 | 204 | 231 | 6704 | –33141 | 2-graph? | ||
? | 847 | 94 | 21 | 9 | 17188 | –5658 | |
752 | 666 | 680 | 4658 | –18188 | |||
? | 847 | 144 | 26 | 24 | 12378 | –10468 | |
702 | 581 | 585 | 9468 | –13378 | |||
? | 847 | 270 | 109 | 75 | 3990 | –5756 | |
576 | 380 | 416 | 4756 | –4090 | |||
? | 847 | 282 | 81 | 100 | 7658 | –26188 | |
564 | 381 | 364 | 25188 | –8658 | |||
? | 847 | 300 | 117 | 100 | 25196 | –8650 | |
546 | 345 | 364 | 7650 | –26196 | pg(21,25,14)? | ||
? | 847 | 360 | 143 | 160 | 8630 | –25216 | |
486 | 285 | 270 | 24216 | –9630 | |||
? | 847 | 390 | 161 | 195 | 5741 | –39105 | pg(10,38,5)?; 2-graph\*? |
456 | 260 | 228 | 38105 | –6741 | 2-graph\*? | ||
? | 848 | 121 | 24 | 16 | 15264 | –7583 | |
726 | 620 | 630 | 6583 | –16264 | |||
? | 848 | 231 | 70 | 60 | 19264 | –9583 | |
616 | 444 | 456 | 8583 | –20264 | |||
? | 848 | 297 | 96 | 108 | 9583 | –21264 | |
550 | 360 | 350 | 20264 | –10583 | |||
? | 848 | 385 | 156 | 190 | 5742 | –39105 | 2-graph? |
462 | 266 | 234 | 38105 | –6742 | 2-graph? | ||
? | 848 | 418 | 222 | 190 | 38106 | –6741 | 2-graph? |
429 | 200 | 234 | 5741 | –39106 | pg(11,38,6)?; 2-graph? | ||
- | 849 | 424 | 211 | 212 | 14.069424 | –15.069424 | Conf |
? | 850 | 261 | 64 | 87 | 6696 | –29153 | pg(9,28,3)? |
588 | 413 | 392 | 28153 | –7696 | |||
? | 850 | 336 | 164 | 112 | 5651 | –4798 | |
513 | 288 | 342 | 3798 | –5751 | pg(9,56,6)? |