Up

The cubic distance-regular graphs

There are 13 cubic distance-regular graphs, namely:

 d  v name intersection array
1 4 K4 {3;1}
2 6 K3,3 {3,2;1,3}
2 10 Petersen {3,2;1,1}
3 8 3-cube {3,2,1;1,2,3}
3 14 Heawood {3,2,2;1,1,3}
4 18 Pappus {3,2,2,1;1,1,2,3}
4 28 Coxeter {3,2,2,1;1,1,1,2}
4 30 Tutte's 8-cage {3,2,2,2;1,1,1,3}
5 20 Dodecahedron {3,2,1,1,1;1,1,1,2,3}
5 20 Desargues {3,2,2,1,1;1,1,2,2,3}
6 126 Tutte's 12-cage {3,2,2,2,2,2;1,1,1,1,1,3}
7 102 Biggs-Smith {3,2,2,2,1,1,1;1,1,1,1,1,1,3}
8 90 Foster {3,2,2,2,2,1,1,1;1,1,1,1,2,2,2,3}

Each is uniquely determined by the intersection array. All are distance-transitive, except for Tutte's 12-cage.