
[Page 1]

On projective planes of order less than 32

G. Eric Moorhouse

Abstract. By our count, 245 projective planes of order less than 32 are currently known.
This list is dominated by the 193 known planes of order 25. Most of these are either
translation planes or Hughes planes, or planes obtained from these by the well-known
process of repeatedly dualizing and deriving. We describe two new planes obtainable by
the quite different method of ‘lifting quotients’.

2000 Mathematics Subject Classification: 51E15

1. Quick Survey

We assume the reader is familiar with the notion of a finite projective plane (which
in this paper we call simply a plane) and related definitions; see e.g. [1, 5, 12] for
the relevant background. The two biggest open problems in this research area are

(Q1) Must every plane have prime power order?

(Q2) Must every plane of prime order be Desarguesian?

To date, the best answer to (Q1) is given by the Bruck-Ryser Theorem [2], exclud-
ing as possible plane orders all values of n ≡ 1, 2 mod 4 which are not expressible
in the form a2 + b2 for two integers a, b; and the nonexistence of planes of order 10
[14]. The best progress towards (Q2) is the result that a transitive affine plane of
prime order is Desarguesian; see [9, 11, 28].

In Table 1 we list the number of planes (or a lower bound indicating the number
of known planes) of each order n < 32 for which at least one plane of order n is
known. More complete information, including explicit line sets and generators of
the full collineation groups, can be found at [24]. This list of known planes consists
of

(i) All translation planes [16, 3, 5, 6] of order less than 32.

(ii) The ordinary Hughes planes of order 9 and 25, and the exceptional Hughes
plane of order 25; see [15].

(iii) The Figueroa plane [7, 10] of order 27.
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Table 1: Number of Planes of Order n < 32

n
no. of planes
of order n
up to isomorphism

no. of planes
of order n
up to iso./duality

Remarks

2 1 1 Desarguesian
3 1 1 Desarguesian
4 1 1 Desarguesian
5 1 1 Desarguesian
7 1 1 Desarguesian
8 1 1 Desarguesian
9 4 3 Lam, Kolesova, Thiel [13]
11 ≥ 1 ≥ 1 Desarguesian
13 ≥ 1 ≥ 1 Desarguesian
16 ≥ 22 ≥ 13 Royle [29]
17 ≥ 1 ≥ 1 Desarguesian
19 ≥ 1 ≥ 1 Desarguesian
23 ≥ 1 ≥ 1 Desarguesian
25 ≥ 193 ≥ 99 [3, 24]
27 ≥ 13 ≥ 8 [5, 24]
29 ≥ 1 ≥ 1 Desarguesian
31 ≥ 1 ≥ 1 Desarguesian

(iv) The Mathon plane of order 16.

(v) All planes constructible from those of type (i), (ii) and (iv) by dualizing
and/or deriving [12], perhaps repeatedly.

(vi) The Wyoming planes w1 and w2 of order 25 and their duals, described in
Section 2.

The Mathon plane of order 16 (see [29]) was constructed by R. Mathon using
net replacement. The Wyoming planes were constructed by the process of lifting
quotients, described in Section 3. Our list is closed under the process described
in (v); also under the process of lifting quotients by involutions. The known
planes of order 25 predominate in Table 1, and we would not be surprised if many
more planes of order 25 are yet to be found, possibly by net replacement. More
interesting still, however, would be the discovery of any new planes of order 32,
or a classification of the translation planes of order 32; but we expect such a list
would be quite small.

Figure 1 lists the known planes of order 25 up to duality. The translation
planes are indicated a1, . . . , a8; b1, . . . , b8; s1, . . . , s5 following the notation
of [3]; here s1 denotes the Desarguesian plane, and a2 the Dickson nearfield plane.
The ordinary and exceptional Hughes planes of order 25 are denoted h1 and h2
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respectively. The five self-dual planes are indicated by asterisks. Solid edges
indicate those pairs of planes in which one plane (or its dual) may be obtained
from the other by derivation. Dotted edges indicate those pairs of planes in which
one plane (or its dual) may be obtained from the other by the process of lifting
quotients.

Figure 1: Known Planes of Order 25

.........
.................................................................................
.........

........
..............

....................................................................
.........

........
..............

....................................................................
.........

a5

a1

a6
........
........
........
........
........
...

........

........

........

........

........

...

a1a

a5a

a6a

a6b

a6c

........

........

........

........

.....
......................................

......................................

......................................

.......................................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

a5g

a5d

a5b
a5c

a5f
a5e

........

........

........

........

..

.......................................

a1b

a1c

........

........

........

........

..

.......................
....................

...........................................

.........
..........
..........
........

................
................

......
.........
..........
..........
........

................
................

...... ........
..............

.....................................................................
........

........
..............

.....................................................................
........

........
...............

....................................................................
........

a8

a4

a2
........
........
........
........
........
...

........

........

........

........

........

...

a2a a2b

a8f a8d

a8e

a4d

a4a

a4b

a4c

........

........

........

........

..

.......................................

.......................................

..........................................

..........................................

..........................................

........

........

........

........

........

........

........

........

........

........

........

..

.......................
....................

...........................................

a8b
a8a a8c

........

........

........

........

..

............
............

............

............
............
............

.........................................

............................
................................

w1w2...........................................

........
..............

....................................................................
.........

........
..............

....................................................................
.........

.........
.................................................................................
.........

.........
..................................................................................
........

s5

s4

s2

s3

........

........

........

........

........

...

........

........

........

........

........

...

........

........

........

........

........

...

.................................

s5c

s4b

s2b

s3b

........

........

........

........

........

........

........

.....

........

........

........

........

........

........

........

.....

........

........

........

........

........

........

........

.....

........................................

........................................

........................................

........................................

s5b

.....................................

s5a ..........................................

s4a ..........................................

........

........

........

........

........

........

........

.....

s3a

........

........

........

........

..

s2a∗

...........
..........

...........
...........

......

........
..............

....................................................................
.........b3

b3a

........

........

........

........

.....

b3eb3b

b3db3c

......................
.........

......................
.........

.............................

..................................

.........................................
.........
.........
........................................b6

b6a

........

........

........

........

.....

b6eb6b

b6db6c

......................
.........

......................
.........

.............................

..................................

........
..............

.....................................................................
........b7

b7a

b7b

b7c

b7d
........
........
........
........
.....

.....................................

................................... ...................................

.........
..................................................................................
........s1∗

.........
..................................................................................
........h1∗

h1a

h1b
∗

........

........

........

....

........

........

........

...

........
...............

....................................................................
........h2∗

h2a

h2b

........

........

........

....

........

........

........

....

.........................................
.........
.........
........................................b1

b1a

b1b b1c

........

........

........

........

.....

....................................

....................................

.........
..................................................................................
........b2

b2a

b2b b2c

........

........

........

........

.....

....................................

....................................

.........
..................................................................................
........b8

........

........

........

........

.....b8a
b8b b8g

b8c b8f

b8d b8e

............
............

............

............
............
........

.......................................
..............................................................................

.........................................

.........
..................................................................................
........a7

.........
..................................................................................
........a3

........

........

........

........

........

...

a3a a3b

a7a a7b

a7c

........

........

........

........

.....

......................................

......................................

....................................

....................................

........

........

........

........

........

........

........

.....

........

........

........

........

........

........

........

.....

........
..............

....................................................................
.........b5b5a b5b....................................................................................

..............
....................................................................
.........b4b4a b4b............................................................................

......
...

......
......

......
..

......
......

.........

..........

We gratefully acknowledge discussions with W.M. Kantor regarding the struc-
ture of the planes w1 and w2.

2. The Wyoming Planes

Here we define the Wyoming Planes w1 and w2 of order 25, of Lenz-Barlotti types
II.1 and I.1 respectively. Explicit lists of point-line incidences for these planes
appear at [24]. The following description, however, is obtained with the aid of
nauty (for determination of the full automorphism group) and GAP (for identifying
the structure of this group). Alternative descriptions may be possible by modifying
the standard description of the Dickson nearfield plane, in hopes of generalizing
this construction; but this we have not done.

The plane w1 has full collineation group G of order 19200 given by

G = 〈g1, g2, . . . , g8〉 ∼= (52×Q8):SL2(3):4 < GL5(5)
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where Q8 is quaternion of order 8; here the generators are given by

g1 =

⎡
⎢⎣
1 0 0 1 0

1 0
0 1

1 0
0 1

⎤
⎥⎦ , g2 =

⎡
⎢⎣
1 0 0 0 1

1 0
0 1

1 0
0 1

⎤
⎥⎦ , g3 =

⎡
⎢⎣
1 0 0 0 0

2 0
0 3

1 0
0 1

⎤
⎥⎦ , g4 =

⎡
⎢⎣
1 0 0 0 0

0 1
4 0

1 0
0 1

⎤
⎥⎦ ,

g5 =

⎡
⎢⎣
1 0 0 0 0

2 0
0 3

2 0
0 3

⎤
⎥⎦ , g6 =

⎡
⎢⎣
1 0 0 0 0

0 1
4 0

0 1
4 0

⎤
⎥⎦ , g7 =

⎡
⎢⎣
1 0 0 0 0

1 1
2 3

1 1
2 3

⎤
⎥⎦ , g8 =

⎡
⎢⎣
1 0 0 0 0

1 0
0 2

1 0
0 2

⎤
⎥⎦ .

The plane has five point orbits and five line orbits, and representatives P1, . . . , P5;
L1, . . . ,L5 may be chosen having stabilizers

GP1 = GP2 = GL1 = GL2 = G; GP4 = GL4 = 〈g3, g4, . . . , g8〉,

GP5 =

〈⎡
⎢⎣
1 0 0 0 0

1 0
0 2

3 0
0 4

⎤
⎥⎦ ,

⎡
⎢⎣
1 0 0 0 0

0 1
4 0

0 2
2 0

⎤
⎥⎦

〉
, GL5 =

〈⎡
⎢⎣
1 0 0 0 0

4 0
0 4

0 3
3 0

⎤
⎥⎦ ,

⎡
⎢⎣
1 0 0 0 0

2 0
0 4

1 0
0 3

⎤
⎥⎦

〉
,

GP3 = 〈GL5 , g1, g2〉, GL3 = 〈GP5 , g1, g2〉.
The stabilizers have order |GPi | = |GLi | = 19200, 19200, 800, 768, 32 for i =
1, 2, . . . , 5. The corresponding point and line orbit sizes are 1, 1, 24, 25, 600.
The structure of the plane w1 is fully determined by specifying, for all i, j ∈
{1, 2, . . . , 5}, the subset Aij ⊆ G such that P g

i ∈ Lh
j iff gh−1 ∈ Aij . These

subsets, and their corresponding sizes, are displayed in matrix form as⎡
⎢⎢⎢⎢⎣

G G G ∅ ∅

G ∅ ∅ G ∅

G ∅ ∅ ∅ P3

∅ G ∅ P4 P4

∅ ∅ L3 L4 P5{g1, g9}L5

⎤
⎥⎥⎥⎥⎦

and ⎡
⎢⎢⎢⎢⎣
19200 19200 19200 0 0
19200 0 0 19200 0
19200 0 0 0 800

0 19200 0 768 768
0 0 800 768 768

⎤
⎥⎥⎥⎥⎦

respectively, where

g9 =

⎡
⎢⎣
1 0 0 4 4

1 2
2 1

1 2
2 1

⎤
⎥⎦

and we abbreviate the stabilizers GPi , GLi by Pi, Li respectively. The Sylow 5-
subgroup 〈g1, g2〉 consists of elations with common centre P1 and axis L1; thus
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the plane is (P1, L1)-transitive. The subgroup Q8 = 〈g3, g4〉 consists of homologies
with common centre P2 and axis L2 .

The second Wyoming plane w2 has full collineation group of order 3200 given
by

G = 〈g1, g2, . . . , g5〉 ∼= 4×((5:4) � 2) < GL4(5)

where

g1 =

⎡
⎣1 0 1 0

1
1 0
0 1

⎤
⎦ , g2 =

⎡
⎣1 0 0 1

1
1 0
0 1

⎤
⎦ , g3 =

⎡
⎣1 0 0 0

2
1 0
0 1

⎤
⎦ ,

g4 =

⎡
⎣1 0 0 0

1
2 0
0 1

⎤
⎦ , g5 =

⎡
⎣1 0 0 0

1
0 1
1 0

⎤
⎦ , g6 = g5g4g5 =

⎡
⎣1 0 0 0

1
1 0
0 2

⎤
⎦ .

Representatives P1, . . . , P7 of the seven point orbits may be chosen having stabi-
lizers

GP1 =〈g1, g2, g3, g4, g6〉, GP2 =〈g1, g2, g3, g4g6, g5g
2
4〉,

GP3 =〈g1, g2, g5, g3g4, g3g6〉, GP4 =〈g1, g2, g2
3g4g

3
6 , g5g

2
4〉,

GP5 =〈g3, g4, g5〉, GP6 =〈g3g6, g4g
3
6〉, GP7 =〈g3

3g4g6, g3
4g5g4〉

of order 1600, 800, 800, 200, 128, 16, 8; the corresponding point orbits have size
2, 4, 4, 16, 25, 200, 400. Representatives L1, . . . ,L7 of the seven line orbits may
be chosen having stabilizers

GL1 =G, GL2 =〈g2, g3, g4, g6〉, GL3 =〈g2
1g2, g3, g5g

2
4 , g4g6〉,

GL4 =〈g2, g3g4g1, g2
3g6〉, GL5 =〈g2

1g2, g3
4g5g4, g3

3g4g6〉,

GL6 =〈g5, g3g4, g3g6〉, GL7 =〈g5g
2
4 , g2

3g4g
3
6〉

of order 3200, 320, 160, 80, 40, 32, 8; the corresponding line orbits have size 1,
10, 20, 40, 80, 100, 400. For all i, j ∈ {1, 2, . . . , 7}, the subset Aij ⊆ G satisfies
P g

i ∈ Lh
j iff gh−1 ∈ Aij . These subsets, and their corresponding sizes, are

displayed in matrix form as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

G P1 ∅ P1 ∅ ∅ ∅

G ∅ P2 ∅ P2 ∅ ∅

G ∅ ∅ ∅ ∅ P3 ∅

G ∅ ∅ ∅ ∅ ∅ P4

∅ P5L2 P5L3 ∅ ∅ P5 P5

∅ L2 ∅ P6g3g5g
4
1L4 P6g3L4 P6g

2
1L6 P6g

2
1g

2
2L7

∅ ∅ P7g5L3 P7g
4
1L4 P7{e, g4}L5 P7g

4
1g

2
2L6 P7{g3

1, g1g
4
2g6}L7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3200 1600 0 1600 0 0 0
3200 0 800 0 800 0 0
3200 0 0 0 0 800 0
3200 0 0 0 0 0 200

0 640 640 0 0 128 128
0 320 0 80 160 128 128
0 0 160 160 120 128 128

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

respectively, where e denotes the identity of G, and we abbreviate the stabilizers
GPi , GLi by Pi, Li respectively. The subgroup Z(G) = 〈g3〉 fixes a Baer sub-
plane B. The Sylow 5-subgroup 〈g1, g2〉 consists of elations of w2 with common
axis L1 and whose centres are the six points of L1 in B; thus w2 is a semi-translation
plane [4].

3. Method of ‘Lifting Quotients’

The key notion in this method is topological: given a double cover X → Y of
topological spaces, one asks for other spaces in place of X which may form double
covers of Y . The appropriate tools for studying this question are found in any
discussion of the cohomology of cell complexes; see e.g. [17]. Further details on
this method are found in [21, 22, 23].

Let (Π, τ) be a pair consisting of a projective plane Π of order n, and a
collineation τ ∈ Aut(Π) of order two. From such a pair we construct an inci-
dence structure Σ = Π/τ whose points (respectively, blocks) are given by the
τ -orbits of length two on the points (resp., lines) of Π. We may safely disregard
fixed points and lines of τ , because of the following.

Proposition 3.1. The plane Π is uniquely reconstructible from the incidences
between those of its points and lines not fixed by τ .

Incidence in Σ is naturally induced by that in Π: a point P = {P0, P
τ
0 } lies on a

block L = {L0, L
τ
0} in Σ, iff P0 lies in either L0 or Lτ

0 . Here P0 and L0 represent
a point and line of Π, neither of which is fixed by τ . A flag in Σ is an incident
point-block pair (P, L). A digon in Σ is a substructure ({P, Q}, {L, M}) in which
P, Q are distinct points of Σ; and L, M are distinct blocks of Σ, both of which
contain P and Q. We may distinguish three possibilities for the structure of Σ:

(i) n is even and τ is an elation of Π. In this case Σ has 1
2n2 points, 1

2n2 blocks,
1
2n3 flags and 1

8n3(n−1) digons. We call Σ an elation semibiplane.

(ii) n is odd and τ is a homology of Π. In this case Σ has 1
2 (n2−1) points,

1
2 (n2−1) blocks, 1

2 (n2−1)(n−1) flags and 1
8n(n2−1)(n−1) digons. We call

Σ a homology semibiplane.
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(iii) n is a perfect square and τ is a Baer involution of Π. In this case Σ has
1
2 (n2−√

n) points, 1
2 (n2−√

n) blocks, 1
2n(n2−√

n) flags and 1
8n(n2−√

n)(n
−1) digons. We call Σ a Baer semibiplane.

Fortunately we are able to treat all three of these cases uniformly. It is a straight-
forward process to write down the most obvious properties such a quotient struc-
ture Σ must satisfy by virtue of Π being a projective plane with involutory
collineation τ , and to adopt these as axioms for a semibiplane; see [30, 31, 32,
21, 22, 23].

Given another pair (Π′, τ ′) consisting of a projective plane of order n with
collineation of order two, we say the two pairs are equivalent if there is an isomor-
phism (i.e. collineation) θ : Π → Π′ such that θ ◦ τ = τ ′ ◦ θ. In this case it is clear
that the quotient structures Σ = Π/τ and Σ′ = Π′/τ ′ are isomorphic.

We may reverse the above quotient construction by asking: given Σ as above
(obtained either from a known projective plane, or by some other construction
known to satisfy the axioms for a semibiplane), we ask for all possible equivalence
classes of pairs (Π, τ) such that Π/τ ∼= Σ. This lifting process may have no
solution (if Σ was not constructed as the quotient of a known plane) or may have
several inequivalent solutions. This suggests the following process for attempting
to produce new planes from a known plane Π0:

Algorithm LIFT-SEMIBIPLANE: Given a plane Π0 ,

1. Compute G = Aut(Π0) using nauty.

2. Using GAP, list representatives τ1, . . . , τk for the conjugacy classes of involu-
tions in G.

3. For each i = 1, 2, . . . , k,

3a. Produce the quotient structure Σi = Π0/τi.
3b. Determine representatives (Π, τ) for all equivalence classes of pairs such

that Π/τ ∼= Σi. In each case test Π to see if it is a previously known
plane; if not, store it.

In order to accomplish Step 3b, we first construct from Σ = Σi a cell complex
X = XΣ of rank 2, all of whose 2-cells are squares, as follows. The vertices (0-
cells) of X are the points and blocks of Σ. The edges (1-cells) of X are the flags
of Σ. The faces (2-cells) of X are the digons of Σ. Incidence in X is naturally
induced from that in Σ. Note that X is nothing more than the incidence graph of
Σ, with the digons ‘shaded in’, i.e. the incidence graph of Σ is the 1-skeleton of X .
For example if Σ is the quotient of a projective plane of order 4 by an elation, one
checks [23] that X is the 2-skeleton of a tesseract (4-cube). Let F = {0, 1}, the field
of order two, and let Ci = Ci(X, F ) be the F -space of all functions {i-cells} → F
(i.e. the space of i-cochains). Let δ : Ci → Ci+1 be the usual coboundary operator.

Consider a possible ‘lifting’ of Σ to a plane Π, in which a typical point P and
block L of Σ correspond to pairs of points {P0, P1} and lines {L0, L1} in Π. For
every such flag (P, L) in Σ, we have either
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(0) P0 ∈ L0 and P1 ∈ L1 in Π; or

(1) P0 ∈ L1 and P1 ∈ L0 in Π.

Define α ∈ C1 by α(P, L) = 0 or 1 according as case (0) or (1) holds, and denote
by Σα the resulting ‘lifting’ of Σ. The condition that Σα is a partial linear space,
is that δ(α) = σ, where σ ∈ C2 is defined by σ(D) = 1 for every face D of X .
Accordingly, we say that α ∈ C1 is admissible if δ(α) = σ. Using Proposition 3.1,
it is not hard to see that

Proposition 3.2. ‘Liftings’ from Σ to planes, correspond bijectively to admissible
elements of C1.

Next observe that if α, β ∈ C1 are admissible, then δ(α + β) = σ + σ = 0. Thus

Proposition 3.3. The set of admissible elements of C1 is either empty, or a coset
of Z1 = ker δ

∣∣
C1 : C1 → C2.

If α ∈ C1 is admissible, then every element β ∈ α+B1 is admissible, where
B1 = δC0 ≤ C1; but for every such β, the lifting Σβ differs from Σα only by
certain interchanges (such as P0 ↔ P1 or L0 ↔ L1) of the names for points and
lines. Thus

Proposition 3.4. Let α, β ∈ C1 be admissible. If α ≡ β mod B1, where B1 =
δC0 ≤ C1, then Σα ∼= Σβ.

We easily obtain

Proposition 3.5. Given Σ, the equivalence classes of pairs (Π, τ) such that Π/τ ∼=
Σ are in bijective correspondence with the orbits of Aut(Σ) on {α ∈ C1 : α admis-
sible}/B1.

Note regarding this notation: In view of Proposition 3.3, {α ∈ C1 : α admis-
sible}/B1 is either empty, or a coset of H1 = Z1/B1 in C1/B1. In the latter case,
the set {α ∈ C1 : α admissible}/B1 and the space H1 have the same cardinality,
and both are invariant under Aut(Σ); yet the action of Aut(Σ) on these two sets
need not be permutation-equivalent.

Corollary 3.6. If H1(X, F ) = 0 then there is at most one equivalence class of
pairs (Π, τ) such that Π/τ ∼= Σ.

The main result of [22] is that if Σ is a homology semibiplane obtained from
a Desarguesian plane of odd prime order, then H1(XΣ, F ) = 0, and so Σ lifts
uniquely to the Desarguesian plane. It should be possible to generalize this result
to include arbitrary semibiplanes obtained from Desarguesian planes.

We may now clarify Step 3b of Algorithm LIFT-SEMIBIPLANE given above:

3b.i Solve the linear system δ(α) = σ for α ∈ C1. List distinct cosets
α1+B1, . . . , αs+B1 of solutions.
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3b.ii Enumerate orbits of Aut(Σ) on {α1+B1, . . . , αs+B1}.
3b.iii For one representative αi+B1 of each such orbit, produce the lifted

plane Σαi and check (see Section 4) to see whether this plane is known.

Step 3b.i requires solving a linear system of O(n4) linear equations in O(n3) un-
knowns, using Gaussian elimination since the system is not at all sparse. Using
bitwise operations in C or C++ in order to economize on computer memory, we
found this step to be quite feasible for all values of n we have considered. Step
3b.ii is also quite manageable since dimH1(X, F ) ≤ 4 in every case considered,
and so the admissible 1-cochains lie in at most 24 cosets of B1.

Some instances of pairs of planes in which one plane is obtainable by lifting a
quotient of the other, are as follows:

(i) For any odd prime power q, the Desarguesian and ordinary Hughes planes
of order q2.

(ii) The Johnson-Walker and Lorimer-Rahilly planes of order 16.

(iii) The Lorimer-Rahilly and derived semifield planes of order 16.

(iv) The two semifield planes of order 16 (having kernels of order 2 and 4).

(v) The Mathon plane of order 16 and its dual.

(vi) The five pairs of planes of order 25 indicated by the dotted edges in Figure 1.

The Wyoming planes represent the first true success of this method of constructing
new planes, simply because the other planes listed in (i)–(vi) above were previously
constructed by other means.

It is natural to ask for semibiplanes constructed by means other than as quo-
tients of known planes, in the hopes that these may be lifted to give new planes.
Many such constructions of semibiplanes are found in the literature, but none
(except for those obtained as quotients of known planes) has been found to be
liftable to planes. The advantage of starting with known planes and forming quo-
tients, is that this yields such an abundant and ready supply of semibiplanes, with
correspondingly higher odds of success.

One may also try to replace the collineation τ of order two by a larger colline-
ation group G ≤ Aut(Π), hoping to find liftings of Π/G to planes other than
the original Π. Unfortunately in the case |G| > 2, no efficient algorithm for
determining such liftings is known, in contrast with the situation for |G| = 2
where the problem reduces to linear algebra.

After implementing Algorithm LIFT-SEMIBIPLANE for all known planes of
order less than 32, we implemented a very similar Algorithm LIFT-QUOTIENT
for the smallest known generalized n-gons for n=4, 6, 8. Here we construct the
quotient of a generalized polygon by any collineation of order two, and look for
alternative liftings of these quotient structures, thereby conceivably producing
new generalized polygons [26]. Unfortunately no new generalized polygons were
found, after applying the approach to the 32 smallest generalized quadrangles
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(18 up to isomorphism/duality), the 9 smallest generalized hexagons (5 up to
isomorphism/duality) and the 2 smallest generalized octagons (1 up to isomor-
phism/duality). However, it is worth noting that for the generalized quadrangle
[27] with parameters (s, t) = (3, 5), the quotient structure Σ for an appropriate
choice of involutory collineation has dimH1(XΣ , F ) = 1. In this case however,
the group Aut(Σ) has only one orbit on {admissible 1-cochains}/B1 so there is
only one equivalence class of pairs (Q, τ) consisting of a generalized quadrangle Q
and involutory collineation τ such that Q/τ ∼= Σ. This is not too surprising since
the generalized quadrangle with parameters (s, t) = (3, 5) is known to be unique
up to isomorphism.

4. Isomorphism Testing

The unrivaled tool for computing automorphism groups of graphs and designs,
and for testing for isomorphisms between such objects, is B. McKay’s software
package nauty [18, 19]. Given a graph Γ, nauty will determine the automorphism
group of Γ, and provide a ‘canonical’ representative of the isomorphism class of Γ.
(Thus Γ ∼= Γ′ iff the graphs Γ and Γ′ have the same canonical representative. This
canonical representative is rather subtle to define and may depend somewhat on
the choice of computer hardware used in computation.) This can be applied to
the bipartite incidence graph AΠ of a projective plane Π of order n. If P and L
are the point and line sets of Π, then the graph AΠ has 2(n2+n+1) vertices given
by the set P ∪ L, and edges corresponding to incident point-line pairs. Note that
Aut(AΠ) is isomorphic to the group consisting of all collineations and correlations
of Π, which we denote here by AUT(Π). If desired, we may ask nauty to preserve
the two parts of the vertex partition, thereby obtaining just the collineation group
of Π, which we denote by Aut(Π); thus [AUT(Π) : Aut(Π)] ≤ 2.

For reasons that will soon appear, we consider also the non-incidence graph
ΓΠ , having 2(n2+n+1) vertices given by P ∪ L, and edges corresponding to the
non-incident point-line pairs of Π. This graph is regular of degree n2, which
greatly exceeds the degree n+1 of AΠ , and so it would seem to be less desirable
for computational purposes.

Projective planes are time-consuming cases for nauty. Using a typical desktop
personal computer, I found that nauty was able to compute Aut(AΠ) for planes
of order 16 in a matter of minutes (using Gordon Royle’s invariant cellfano2, an
option in the nauty package); planes of order 25 or 27 required hours or days; and
planes of order 32 were infeasible. To overcome this computational hurdle, I use
the following device which I refer to as ‘Conway Doubling’, after an idea of J.H.
Conway; see [20].

As before, Π = (P, L) denotes a projective plane of order n. We proceed to
define a graph ∆Π with 4(n2+n+1) vertices (roughly a double cover of the non-
incidence graph ΓΠ) as follows. Let F = {0, 1} be the field of order two. Vertices
of ∆Π are of the form (P, i) or (L, j) where P ∈ P, L ∈ L, and i, j ∈ F . To define
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adjacency in ∆Π, first index the points on each line using labels 0, 1, 2, . . . , n via
a fixed (but arbitrary) ordering. Similarly, index the lines through each point
using labels 0, 1, 2, . . . , n. For each non-incident point-line pair (P, L) in Π, the
incidences between points of L and lines through P naturally yield a permutation
σP,L ∈ Sym{0, 1, 2, . . . , n}. There are two types of edges in ∆Π:

(I) (P, i) ∼ (L, j) iff P /∈ L and sgn(σP,L) = (−1)i+j ;

(II) (P, 0) ∼ (P, 1), (L, 0) ∼ (L, 1).

Type I edges form a double cover of ΓΠ. Type II edges ensure that ∆Π is con-
nected. Using nauty, we compute the group G consisting of all automorphisms
of ∆Π preserving the vertex partition {P×F, L×F}; also the group G0 of all
automorphisms of ∆Π preserving both P × F and L × F . Let Z ≤ Aut(∆Π) be
the subgroup of order two generated by

(P, 0) ↔ (P, 1), (L, 0) ↔ (L, 1).

Clearly we have Z ≤ G0 ≤ G ≤ Aut(∆Π) and Z ≤ Z(Aut(∆Π)). It is not hard
to see that AUT(Π) ∼= G/Z and Aut(Π) ∼= G0/Z. Moreover, two planes Π, Π′

of order n are isomorphic, if and only if the graphs ∆Π (with distinguished vertex
subset P×F ) and ∆Π′ (with distinguished vertex subset P′×F , where P′ is the
point set of Π′) yield the same canonical representative as computed using nauty.
Although the graph ∆Π is somewhat larger than AΠ or ΓΠ , experience shows that
the determination of Aut(Π) is much faster by this method.

We note that without the type II edges, ∆Π could be disconnected, in fact a dis-
joint union of two copies of ΓΠ, with rather large automorphism group Aut(Π) � 2.
In particular, this happens [20] whenever Π is a Desarguesian plane of even order.

Our program for generating planes of small order using the known construc-
tions, typically produced each plane many times. Using nauty we were able to
store just one canonical representative of each isomorphism class. Evidence that
the planes in the resulting list are nonisomorphic, is provided by nauty itself.
However, an independent certificate of non-isomorphism is desirable so that one
need not rely on the correctness of the nauty code. For this purpose we have listed
fingerprints [25] of all planes in our list. The fingerprint of a finite projective plane
is an isomorphism invariant, consisting of the multiset of absolute values of the en-
tries of AAT , where A is the (n2+n+1)×(n2+n+1) matrix with (P, L)-entry equal
to sgn(σP,L); see [20]. Computing the fingerprint of a plane Π typically requires
more execution time than using nauty to compute the canonical representative of
AΠ or of ∆Π; however, once nauty has determined Aut(Π) as outlined above, this
information greatly facilitates the computation of the fingerprint of Π. Even here
we have not required the assumption that nauty is correct, since we verify directly
that the generators for Aut(Π) supplied by nauty are indeed automorphisms of
Π, and we do not need to know that they generate the full automorphism group
of Π in order to quickly compute the fingerprint of Π.
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