Projective Planes of Order 49 Related to t91


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t91 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t91

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t91, dual dt91 57624 25,410,2401 1,985,19610 941
2 t91_0_0, dt91_0_0 2058 1,756,2058 18,42,4949 987
3 t91_0_1, dt91_0_1 2058 1,756,2058 18,42,4949 987
4 t91_0_2, dt91_0_2 2058 1,756,2058 18,42,4949 987
5 t91_0_3, dt91_0_3 2058 1,756,2058 18,42,4949 987
6 t91_0_4, dt91_0_4 2058 1,756,2058 18,42,4949 987
7 t91_0_5, dt91_0_5 2058 1,756,2058 18,42,4949 987
8 t91_0_6, dt91_0_6 2058 1,756,2058 18,42,4949 987
9 t91_0_7, dt91_0_7 2058 1,756,2058 18,42,4949 987
10 t91_1_0, dt91_1_0 2058 1,756,2058 18,42,4949 987
11 t91_1_1, dt91_1_1 2058 1,756,2058 18,42,4949 987
12 t91_1_2, dt91_1_2 2058 1,756,2058 18,42,4949 987
13 t91_1_3, dt91_1_3 2058 1,756,2058 18,42,4949 987
14 t91_1_4, dt91_1_4 2058 1,756,2058 18,42,4949 987
15 t91_1_5, dt91_1_5 2058 1,756,2058 18,42,4949 987
16 t91_1_6, dt91_1_6 2058 1,756,2058 18,42,4949 987
17 t91_1_7, dt91_1_7 2058 1,756,2058 18,42,4949 987
18 t91_2_0, dt91_2_0 2058 1,756,2058 18,42,4949 987
19 t91_2_1, dt91_2_1 2058 1,756,2058 18,42,4949 987
20 t91_2_2, dt91_2_2 2058 1,756,2058 18,42,4949 987
21 t91_2_3, dt91_2_3 2058 1,756,2058 18,42,4949 987
22 t91_2_4, dt91_2_4 2058 1,756,2058 18,42,4949 987
23 t91_2_5, dt91_2_5 2058 1,756,2058 18,42,4949 987
24 t91_2_6, dt91_2_6 2058 1,756,2058 18,42,4949 987
25 t91_2_7, dt91_2_7 2058 1,756,2058 18,42,4949 987
26 t91_3_0, dt91_3_0 2058 1,756,2058 18,42,4949 987
27 t91_3_1, dt91_3_1 2058 1,756,2058 18,42,4949 987
28 t91_3_2, dt91_3_2 2058 1,756,2058 18,42,4949 987
29 t91_3_3, dt91_3_3 2058 1,756,2058 18,42,4949 987
30 t91_3_4, dt91_3_4 2058 1,756,2058 18,42,4949 987
31 t91_3_5, dt91_3_5 2058 1,756,2058 18,42,4949 987
32 t91_3_6, dt91_3_6 2058 1,756,2058 18,42,4949 987
33 t91_3_7, dt91_3_7 2058 1,756,2058 18,42,4949 987
34 t91_4_0, dt91_4_0 2058 1,756,2058 18,42,4949 987
35 t91_4_1, dt91_4_1 2058 1,756,2058 18,42,4949 987
36 t91_4_2, dt91_4_2 2058 1,756,2058 18,42,4949 987
37 t91_4_3, dt91_4_3 2058 1,756,2058 18,42,4949 987
38 t91_4_4, dt91_4_4 2058 1,756,2058 18,42,4949 987
39 t91_4_5, dt91_4_5 2058 1,756,2058 18,42,4949 987
40 t91_4_6, dt91_4_6 2058 1,756,2058 18,42,4949 987
41 t91_4_7, dt91_4_7 2058 1,756,2058 18,42,4949 987
42 t91_5_0, dt91_5_0 2058 1,756,2058 18,42,4949 987
43 t91_5_1, dt91_5_1 2058 1,756,2058 18,42,4949 987
44 t91_5_2, dt91_5_2 2058 1,756,2058 18,42,4949 987
45 t91_5_3, dt91_5_3 2058 1,756,2058 18,42,4949 987
46 t91_5_4, dt91_5_4 2058 1,756,2058 18,42,4949 987
47 t91_5_5, dt91_5_5 2058 1,756,2058 18,42,4949 987
48 t91_5_6, dt91_5_6 2058 1,756,2058 18,42,4949 987
49 t91_5_7, dt91_5_7 2058 1,756,2058 18,42,4949 987
50 t91_6_0, dt91_6_0 2058 1,756,2058 18,42,4949 987
51 t91_6_1, dt91_6_1 2058 1,756,2058 18,42,4949 987
52 t91_6_2, dt91_6_2 2058 1,756,2058 18,42,4949 987
53 t91_6_3, dt91_6_3 2058 1,756,2058 18,42,4949 987
54 t91_6_4, dt91_6_4 2058 1,756,2058 18,42,4949 987
55 t91_6_5, dt91_6_5 2058 1,756,2058 18,42,4949 987
56 t91_6_6, dt91_6_6 2058 1,756,2058 18,42,4949 987
57 t91_6_7, dt91_6_7 2058 1,756,2058 18,42,4949 987
58 t91_7_0, dt91_7_0 2058 1,756,2058 18,42,4949 987
59 t91_7_1, dt91_7_1 2058 1,756,2058 18,42,4949 987
60 t91_7_2, dt91_7_2 2058 1,756,2058 18,42,4949 987
61 t91_7_3, dt91_7_3 2058 1,756,2058 18,42,4949 987
62 t91_7_4, dt91_7_4 2058 1,756,2058 18,42,4949 987
63 t91_7_5, dt91_7_5 2058 1,756,2058 18,42,4949 987
64 t91_7_6, dt91_7_6 2058 1,756,2058 18,42,4949 987
65 t91_7_7, dt91_7_7 2058 1,756,2058 18,42,4949 987
66 t91_8_0, dt91_8_0 2058 1,756,2058 18,42,4949 987
67 t91_8_1, dt91_8_1 2058 1,756,2058 18,42,4949 987
68 t91_8_2, dt91_8_2 2058 1,756,2058 18,42,4949 987
69 t91_8_3, dt91_8_3 2058 1,756,2058 18,42,4949 987
70 t91_8_4, dt91_8_4 2058 1,756,2058 18,42,4949 987
71 t91_8_5, dt91_8_5 2058 1,756,2058 18,42,4949 987
72 t91_8_6, dt91_8_6 2058 1,756,2058 18,42,4949 987
73 t91_8_7, dt91_8_7 2058 1,756,2058 18,42,4949 987
74 t91_9_0, dt91_9_0 2058 1,756,2058 18,42,4949 987
75 t91_9_1, dt91_9_1 2058 1,756,2058 18,42,4949 987
76 t91_9_2, dt91_9_2 2058 1,756,2058 18,42,4949 987
77 t91_9_3, dt91_9_3 2058 1,756,2058 18,42,4949 987
78 t91_9_4, dt91_9_4 2058 1,756,2058 18,42,4949 987
79 t91_9_5, dt91_9_5 2058 1,756,2058 18,42,4949 987
80 t91_9_6, dt91_9_6 2058 1,756,2058 18,42,4949 987
81 t91_9_7, dt91_9_7 2058 1,756,2058 18,42,4949 987
82 t91_10_0, dt91_10_0 4116 1,78,1424,2058 12,23,42,497,9821 987
83 t91_10_1, dt91_10_1 2058 1,756,2058 18,42,4949 987
84 t91_10_2, dt91_10_2 2058 1,756,2058 18,42,4949 987
85 t91_10_3, dt91_10_3 2058 1,756,2058 18,42,4949 987
86 t91_10_4, dt91_10_4 4116 1,78,1424,2058 12,23,42,497,9821 987
87 t91_11_0, dt91_11_0 2058 1,756,2058 18,42,4949 987
88 t91_11_1, dt91_11_1 2058 1,756,2058 18,42,4949 987
89 t91_11_2, dt91_11_2 2058 1,756,2058 18,42,4949 987
90 t91_11_3, dt91_11_3 2058 1,756,2058 18,42,4949 987
91 t91_12_0, dt91_12_0 4116 1,78,1424,2058 12,23,42,497,9821 987
92 t91_12_1, dt91_12_1 2058 1,756,2058 18,42,4949 987
93 t91_12_2, dt91_12_2 2058 1,756,2058 18,42,4949 987
94 t91_12_3, dt91_12_3 4116 1,78,1424,2058 12,23,42,497,9821 987
95 t91_12_4, dt91_12_4 2058 1,756,2058 18,42,4949 987
96 t91_13_0, dt91_13_0 4116 1,78,1424,2058 12,23,42,497,9821 987
97 t91_13_1, dt91_13_1 2058 1,756,2058 18,42,4949 987
98 t91_13_2, dt91_13_2 2058 1,756,2058 18,42,4949 987
99 t91_13_3, dt91_13_3 4116 1,78,1424,2058 12,23,42,497,9821 987
100 t91_13_4, dt91_13_4 2058 1,756,2058 18,42,4949 987
101 t91_14_0, dt91_14_0 2058 1,756,2058 18,42,4949 987
102 t91_14_1, dt91_14_1 2058 1,756,2058 18,42,4949 987
103 t91_14_2, dt91_14_2 2058 1,756,2058 18,42,4949 987
104 t91_14_3, dt91_14_3 4116 1,78,1424,2058 12,23,42,497,9821 987
105 t91_14_4, dt91_14_4 4116 1,78,1424,2058 12,23,42,497,9821 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011