Projective Planes of Order 49 Related to t82


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t82 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t82

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t82, dual dt82 57624 29,48,2401 1,989,1968 941
2 t82_0_0, dt82_0_0 2058 1,756,2058 18,42,4949 987
3 t82_0_1, dt82_0_1 2058 1,756,2058 18,42,4949 987
4 t82_0_2, dt82_0_2 2058 1,756,2058 18,42,4949 987
5 t82_0_3, dt82_0_3 2058 1,756,2058 18,42,4949 987
6 t82_0_4, dt82_0_4 2058 1,756,2058 18,42,4949 987
7 t82_0_5, dt82_0_5 2058 1,756,2058 18,42,4949 987
8 t82_0_6, dt82_0_6 2058 1,756,2058 18,42,4949 987
9 t82_0_7, dt82_0_7 2058 1,756,2058 18,42,4949 987
10 t82_1_0, dt82_1_0 2058 1,756,2058 18,42,4949 987
11 t82_1_1, dt82_1_1 2058 1,756,2058 18,42,4949 987
12 t82_1_2, dt82_1_2 2058 1,756,2058 18,42,4949 987
13 t82_1_3, dt82_1_3 2058 1,756,2058 18,42,4949 987
14 t82_1_4, dt82_1_4 2058 1,756,2058 18,42,4949 987
15 t82_1_5, dt82_1_5 2058 1,756,2058 18,42,4949 987
16 t82_1_6, dt82_1_6 2058 1,756,2058 18,42,4949 987
17 t82_1_7, dt82_1_7 2058 1,756,2058 18,42,4949 987
18 t82_2_0, dt82_2_0 2058 1,756,2058 18,42,4949 987
19 t82_2_1, dt82_2_1 2058 1,756,2058 18,42,4949 987
20 t82_2_2, dt82_2_2 2058 1,756,2058 18,42,4949 987
21 t82_2_3, dt82_2_3 2058 1,756,2058 18,42,4949 987
22 t82_2_4, dt82_2_4 2058 1,756,2058 18,42,4949 987
23 t82_2_5, dt82_2_5 2058 1,756,2058 18,42,4949 987
24 t82_2_6, dt82_2_6 2058 1,756,2058 18,42,4949 987
25 t82_2_7, dt82_2_7 2058 1,756,2058 18,42,4949 987
26 t82_3_0, dt82_3_0 2058 1,756,2058 18,42,4949 987
27 t82_3_1, dt82_3_1 2058 1,756,2058 18,42,4949 987
28 t82_3_2, dt82_3_2 2058 1,756,2058 18,42,4949 987
29 t82_3_3, dt82_3_3 2058 1,756,2058 18,42,4949 987
30 t82_3_4, dt82_3_4 2058 1,756,2058 18,42,4949 987
31 t82_3_5, dt82_3_5 2058 1,756,2058 18,42,4949 987
32 t82_3_6, dt82_3_6 2058 1,756,2058 18,42,4949 987
33 t82_3_7, dt82_3_7 2058 1,756,2058 18,42,4949 987
34 t82_4_0, dt82_4_0 2058 1,756,2058 18,42,4949 987
35 t82_4_1, dt82_4_1 2058 1,756,2058 18,42,4949 987
36 t82_4_2, dt82_4_2 2058 1,756,2058 18,42,4949 987
37 t82_4_3, dt82_4_3 2058 1,756,2058 18,42,4949 987
38 t82_4_4, dt82_4_4 2058 1,756,2058 18,42,4949 987
39 t82_4_5, dt82_4_5 2058 1,756,2058 18,42,4949 987
40 t82_4_6, dt82_4_6 2058 1,756,2058 18,42,4949 987
41 t82_4_7, dt82_4_7 2058 1,756,2058 18,42,4949 987
42 t82_5_0, dt82_5_0 2058 1,756,2058 18,42,4949 987
43 t82_5_1, dt82_5_1 2058 1,756,2058 18,42,4949 987
44 t82_5_2, dt82_5_2 2058 1,756,2058 18,42,4949 987
45 t82_5_3, dt82_5_3 2058 1,756,2058 18,42,4949 987
46 t82_5_4, dt82_5_4 2058 1,756,2058 18,42,4949 987
47 t82_5_5, dt82_5_5 2058 1,756,2058 18,42,4949 987
48 t82_5_6, dt82_5_6 2058 1,756,2058 18,42,4949 987
49 t82_5_7, dt82_5_7 2058 1,756,2058 18,42,4949 987
50 t82_6_0, dt82_6_0 2058 1,756,2058 18,42,4949 987
51 t82_6_1, dt82_6_1 2058 1,756,2058 18,42,4949 987
52 t82_6_2, dt82_6_2 2058 1,756,2058 18,42,4949 987
53 t82_6_3, dt82_6_3 2058 1,756,2058 18,42,4949 987
54 t82_6_4, dt82_6_4 2058 1,756,2058 18,42,4949 987
55 t82_6_5, dt82_6_5 2058 1,756,2058 18,42,4949 987
56 t82_6_6, dt82_6_6 2058 1,756,2058 18,42,4949 987
57 t82_6_7, dt82_6_7 2058 1,756,2058 18,42,4949 987
58 t82_7_0, dt82_7_0 2058 1,756,2058 18,42,4949 987
59 t82_7_1, dt82_7_1 2058 1,756,2058 18,42,4949 987
60 t82_7_2, dt82_7_2 2058 1,756,2058 18,42,4949 987
61 t82_7_3, dt82_7_3 2058 1,756,2058 18,42,4949 987
62 t82_7_4, dt82_7_4 2058 1,756,2058 18,42,4949 987
63 t82_7_5, dt82_7_5 2058 1,756,2058 18,42,4949 987
64 t82_7_6, dt82_7_6 2058 1,756,2058 18,42,4949 987
65 t82_7_7, dt82_7_7 2058 1,756,2058 18,42,4949 987
66 t82_8_0, dt82_8_0 2058 1,756,2058 18,42,4949 987
67 t82_8_1, dt82_8_1 2058 1,756,2058 18,42,4949 987
68 t82_8_2, dt82_8_2 2058 1,756,2058 18,42,4949 987
69 t82_8_3, dt82_8_3 2058 1,756,2058 18,42,4949 987
70 t82_9_0, dt82_9_0 2058 1,756,2058 18,42,4949 987
71 t82_9_1, dt82_9_1 2058 1,756,2058 18,42,4949 987
72 t82_9_2, dt82_9_2 2058 1,756,2058 18,42,4949 987
73 t82_9_3, dt82_9_3 2058 1,756,2058 18,42,4949 987
74 t82_10_0, dt82_10_0 2058 1,756,2058 18,42,4949 987
75 t82_10_1, dt82_10_1 2058 1,756,2058 18,42,4949 987
76 t82_10_2, dt82_10_2 2058 1,756,2058 18,42,4949 987
77 t82_10_3, dt82_10_3 2058 1,756,2058 18,42,4949 987
78 t82_11_0, dt82_11_0 2058 1,756,2058 18,42,4949 987
79 t82_11_1, dt82_11_1 4116 1,78,1424,2058 12,23,42,497,9821 987
80 t82_11_2, dt82_11_2 2058 1,756,2058 18,42,4949 987
81 t82_11_3, dt82_11_3 2058 1,756,2058 18,42,4949 987
82 t82_11_4, dt82_11_4 4116 1,78,1424,2058 12,23,42,497,9821 987
83 t82_12_0, dt82_12_0 2058 1,756,2058 18,42,4949 987
84 t82_12_1, dt82_12_1 2058 1,756,2058 18,42,4949 987
85 t82_12_2, dt82_12_2 4116 1,78,1424,2058 12,23,42,497,9821 987
86 t82_12_3, dt82_12_3 4116 1,78,1424,2058 12,23,42,497,9821 987
87 t82_12_4, dt82_12_4 2058 1,756,2058 18,42,4949 987
88 t82_13_0, dt82_13_0 4116 1,78,1424,2058 12,23,42,497,9821 987
89 t82_13_1, dt82_13_1 4116 1,78,1424,2058 12,23,42,497,9821 985
90 t82_13_2, dt82_13_2 2058 1,756,2058 18,42,4949 987
91 t82_13_3, dt82_13_3 2058 1,756,2058 18,42,4949 987
92 t82_13_4, dt82_13_4 2058 1,756,2058 18,42,4949 987
93 t82_14_0, dt82_14_0 2058 1,756,2058 18,42,4949 987
94 t82_14_1, dt82_14_1 2058 1,756,2058 18,42,4949 987
95 t82_14_2, dt82_14_2 4116 1,78,1424,2058 12,23,42,497,9821 987
96 t82_14_3, dt82_14_3 2058 1,756,2058 18,42,4949 987
97 t82_14_4, dt82_14_4 4116 1,78,1424,2058 12,23,42,497,9821 987
98 t82_15_0, dt82_15_0 2058 1,756,2058 18,42,4949 987
99 t82_15_1, dt82_15_1 2058 1,756,2058 18,42,4949 987
100 t82_15_2, dt82_15_2 2058 1,756,2058 18,42,4949 987
101 t82_15_3, dt82_15_3 2058 1,756,2058 18,42,4949 987
102 t82_16_0, dt82_16_0 2058 1,756,2058 18,42,4949 987
103 t82_16_1, dt82_16_1 2058 1,756,2058 18,42,4949 987
104 t82_16_2, dt82_16_2 2058 1,756,2058 18,42,4949 987
105 t82_16_3, dt82_16_3 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011