Projective Planes of Order 49 Related to t70


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t70 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t70

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t70, dual dt70 57624 25,410,2401 1,985,19610 941
2 t70_0_0, dt70_0_0 2058 1,756,2058 18,42,4949 987
3 t70_0_1, dt70_0_1 2058 1,756,2058 18,42,4949 987
4 t70_0_2, dt70_0_2 2058 1,756,2058 18,42,4949 987
5 t70_0_3, dt70_0_3 2058 1,756,2058 18,42,4949 987
6 t70_0_4, dt70_0_4 2058 1,756,2058 18,42,4949 987
7 t70_0_5, dt70_0_5 2058 1,756,2058 18,42,4949 987
8 t70_0_6, dt70_0_6 2058 1,756,2058 18,42,4949 987
9 t70_0_7, dt70_0_7 2058 1,756,2058 18,42,4949 987
10 t70_1_0, dt70_1_0 2058 1,756,2058 18,42,4949 987
11 t70_1_1, dt70_1_1 2058 1,756,2058 18,42,4949 987
12 t70_1_2, dt70_1_2 2058 1,756,2058 18,42,4949 987
13 t70_1_3, dt70_1_3 2058 1,756,2058 18,42,4949 987
14 t70_1_4, dt70_1_4 2058 1,756,2058 18,42,4949 987
15 t70_1_5, dt70_1_5 2058 1,756,2058 18,42,4949 987
16 t70_1_6, dt70_1_6 2058 1,756,2058 18,42,4949 987
17 t70_1_7, dt70_1_7 2058 1,756,2058 18,42,4949 987
18 t70_2_0, dt70_2_0 2058 1,756,2058 18,42,4949 987
19 t70_2_1, dt70_2_1 2058 1,756,2058 18,42,4949 987
20 t70_2_2, dt70_2_2 2058 1,756,2058 18,42,4949 987
21 t70_2_3, dt70_2_3 2058 1,756,2058 18,42,4949 987
22 t70_2_4, dt70_2_4 2058 1,756,2058 18,42,4949 987
23 t70_2_5, dt70_2_5 2058 1,756,2058 18,42,4949 987
24 t70_2_6, dt70_2_6 2058 1,756,2058 18,42,4949 987
25 t70_2_7, dt70_2_7 2058 1,756,2058 18,42,4949 987
26 t70_3_0, dt70_3_0 2058 1,756,2058 18,42,4949 987
27 t70_3_1, dt70_3_1 2058 1,756,2058 18,42,4949 987
28 t70_3_2, dt70_3_2 2058 1,756,2058 18,42,4949 987
29 t70_3_3, dt70_3_3 2058 1,756,2058 18,42,4949 987
30 t70_3_4, dt70_3_4 2058 1,756,2058 18,42,4949 987
31 t70_3_5, dt70_3_5 2058 1,756,2058 18,42,4949 987
32 t70_3_6, dt70_3_6 2058 1,756,2058 18,42,4949 987
33 t70_3_7, dt70_3_7 2058 1,756,2058 18,42,4949 987
34 t70_4_0, dt70_4_0 2058 1,756,2058 18,42,4949 987
35 t70_4_1, dt70_4_1 2058 1,756,2058 18,42,4949 987
36 t70_4_2, dt70_4_2 2058 1,756,2058 18,42,4949 987
37 t70_4_3, dt70_4_3 2058 1,756,2058 18,42,4949 987
38 t70_4_4, dt70_4_4 2058 1,756,2058 18,42,4949 987
39 t70_4_5, dt70_4_5 2058 1,756,2058 18,42,4949 987
40 t70_4_6, dt70_4_6 2058 1,756,2058 18,42,4949 987
41 t70_4_7, dt70_4_7 2058 1,756,2058 18,42,4949 987
42 t70_5_0, dt70_5_0 2058 1,756,2058 18,42,4949 987
43 t70_5_1, dt70_5_1 2058 1,756,2058 18,42,4949 987
44 t70_5_2, dt70_5_2 2058 1,756,2058 18,42,4949 987
45 t70_5_3, dt70_5_3 2058 1,756,2058 18,42,4949 987
46 t70_5_4, dt70_5_4 2058 1,756,2058 18,42,4949 987
47 t70_5_5, dt70_5_5 2058 1,756,2058 18,42,4949 987
48 t70_5_6, dt70_5_6 2058 1,756,2058 18,42,4949 987
49 t70_5_7, dt70_5_7 2058 1,756,2058 18,42,4949 987
50 t70_6_0, dt70_6_0 2058 1,756,2058 18,42,4949 987
51 t70_6_1, dt70_6_1 2058 1,756,2058 18,42,4949 987
52 t70_6_2, dt70_6_2 2058 1,756,2058 18,42,4949 987
53 t70_6_3, dt70_6_3 2058 1,756,2058 18,42,4949 987
54 t70_6_4, dt70_6_4 2058 1,756,2058 18,42,4949 987
55 t70_6_5, dt70_6_5 2058 1,756,2058 18,42,4949 987
56 t70_6_6, dt70_6_6 2058 1,756,2058 18,42,4949 987
57 t70_6_7, dt70_6_7 2058 1,756,2058 18,42,4949 987
58 t70_7_0, dt70_7_0 2058 1,756,2058 18,42,4949 987
59 t70_7_1, dt70_7_1 2058 1,756,2058 18,42,4949 987
60 t70_7_2, dt70_7_2 2058 1,756,2058 18,42,4949 987
61 t70_7_3, dt70_7_3 2058 1,756,2058 18,42,4949 987
62 t70_7_4, dt70_7_4 2058 1,756,2058 18,42,4949 987
63 t70_7_5, dt70_7_5 2058 1,756,2058 18,42,4949 987
64 t70_7_6, dt70_7_6 2058 1,756,2058 18,42,4949 987
65 t70_7_7, dt70_7_7 2058 1,756,2058 18,42,4949 987
66 t70_8_0, dt70_8_0 2058 1,756,2058 18,42,4949 987
67 t70_8_1, dt70_8_1 2058 1,756,2058 18,42,4949 987
68 t70_8_2, dt70_8_2 2058 1,756,2058 18,42,4949 987
69 t70_8_3, dt70_8_3 2058 1,756,2058 18,42,4949 987
70 t70_8_4, dt70_8_4 2058 1,756,2058 18,42,4949 987
71 t70_8_5, dt70_8_5 2058 1,756,2058 18,42,4949 987
72 t70_8_6, dt70_8_6 2058 1,756,2058 18,42,4949 987
73 t70_8_7, dt70_8_7 2058 1,756,2058 18,42,4949 987
74 t70_9_0, dt70_9_0 2058 1,756,2058 18,42,4949 987
75 t70_9_1, dt70_9_1 2058 1,756,2058 18,42,4949 987
76 t70_9_2, dt70_9_2 2058 1,756,2058 18,42,4949 987
77 t70_9_3, dt70_9_3 2058 1,756,2058 18,42,4949 987
78 t70_9_4, dt70_9_4 2058 1,756,2058 18,42,4949 987
79 t70_9_5, dt70_9_5 2058 1,756,2058 18,42,4949 987
80 t70_9_6, dt70_9_6 2058 1,756,2058 18,42,4949 987
81 t70_9_7, dt70_9_7 2058 1,756,2058 18,42,4949 987
82 t70_10_0, dt70_10_0 2058 1,756,2058 18,42,4949 987
83 t70_10_1, dt70_10_1 2058 1,756,2058 18,42,4949 987
84 t70_10_2, dt70_10_2 2058 1,756,2058 18,42,4949 987
85 t70_10_3, dt70_10_3 2058 1,756,2058 18,42,4949 987
86 t70_11_0, dt70_11_0 2058 1,756,2058 18,42,4949 987
87 t70_11_1, dt70_11_1 2058 1,756,2058 18,42,4949 987
88 t70_11_2, dt70_11_2 2058 1,756,2058 18,42,4949 987
89 t70_11_3, dt70_11_3 2058 1,756,2058 18,42,4949 987
90 t70_12_0, dt70_12_0 2058 1,756,2058 18,42,4949 987
91 t70_12_1, dt70_12_1 2058 1,756,2058 18,42,4949 987
92 t70_12_2, dt70_12_2 2058 1,756,2058 18,42,4949 987
93 t70_12_3, dt70_12_3 2058 1,756,2058 18,42,4949 987
94 t70_13_0, dt70_13_0 2058 1,756,2058 18,42,4949 987
95 t70_13_1, dt70_13_1 2058 1,756,2058 18,42,4949 987
96 t70_13_2, dt70_13_2 2058 1,756,2058 18,42,4949 987
97 t70_13_3, dt70_13_3 2058 1,756,2058 18,42,4949 987
98 t70_14_0, dt70_14_0 2058 1,756,2058 18,42,4949 987
99 t70_14_1, dt70_14_1 2058 1,756,2058 18,42,4949 987
100 t70_14_2, dt70_14_2 2058 1,756,2058 18,42,4949 987
101 t70_14_3, dt70_14_3 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011