Projective Planes of Order 49 Related to t69


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t69 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t69

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t69, dual dt69 57624 14,27,48,2401 1,494,987,1968 941
2 t69_0_0, dt69_0_0 2058 1,756,2058 18,42,4949 987
3 t69_0_1, dt69_0_1 2058 1,756,2058 18,42,4949 987
4 t69_0_2, dt69_0_2 2058 1,756,2058 18,42,4949 987
5 t69_0_3, dt69_0_3 2058 1,756,2058 18,42,4949 987
6 t69_0_4, dt69_0_4 2058 1,756,2058 18,42,4949 987
7 t69_0_5, dt69_0_5 2058 1,756,2058 18,42,4949 987
8 t69_0_6, dt69_0_6 2058 1,756,2058 18,42,4949 987
9 t69_0_7, dt69_0_7 2058 1,756,2058 18,42,4949 987
10 t69_1_0, dt69_1_0 2058 1,756,2058 18,42,4949 987
11 t69_1_1, dt69_1_1 2058 1,756,2058 18,42,4949 987
12 t69_1_2, dt69_1_2 2058 1,756,2058 18,42,4949 987
13 t69_1_3, dt69_1_3 2058 1,756,2058 18,42,4949 987
14 t69_1_4, dt69_1_4 2058 1,756,2058 18,42,4949 987
15 t69_1_5, dt69_1_5 2058 1,756,2058 18,42,4949 987
16 t69_1_6, dt69_1_6 2058 1,756,2058 18,42,4949 987
17 t69_1_7, dt69_1_7 2058 1,756,2058 18,42,4949 987
18 t69_2_0, dt69_2_0 2058 1,756,2058 18,42,4949 987
19 t69_2_1, dt69_2_1 2058 1,756,2058 18,42,4949 987
20 t69_2_2, dt69_2_2 2058 1,756,2058 18,42,4949 987
21 t69_2_3, dt69_2_3 2058 1,756,2058 18,42,4949 987
22 t69_2_4, dt69_2_4 2058 1,756,2058 18,42,4949 987
23 t69_2_5, dt69_2_5 2058 1,756,2058 18,42,4949 987
24 t69_2_6, dt69_2_6 2058 1,756,2058 18,42,4949 987
25 t69_2_7, dt69_2_7 2058 1,756,2058 18,42,4949 987
26 t69_3_0, dt69_3_0 2058 1,756,2058 18,42,4949 987
27 t69_3_1, dt69_3_1 2058 1,756,2058 18,42,4949 987
28 t69_3_2, dt69_3_2 2058 1,756,2058 18,42,4949 987
29 t69_3_3, dt69_3_3 2058 1,756,2058 18,42,4949 987
30 t69_3_4, dt69_3_4 2058 1,756,2058 18,42,4949 987
31 t69_3_5, dt69_3_5 2058 1,756,2058 18,42,4949 987
32 t69_3_6, dt69_3_6 2058 1,756,2058 18,42,4949 987
33 t69_3_7, dt69_3_7 2058 1,756,2058 18,42,4949 987
34 t69_4_0, dt69_4_0 2058 1,756,2058 18,42,4949 987
35 t69_4_1, dt69_4_1 2058 1,756,2058 18,42,4949 987
36 t69_4_2, dt69_4_2 2058 1,756,2058 18,42,4949 987
37 t69_4_3, dt69_4_3 2058 1,756,2058 18,42,4949 987
38 t69_4_4, dt69_4_4 2058 1,756,2058 18,42,4949 987
39 t69_4_5, dt69_4_5 2058 1,756,2058 18,42,4949 987
40 t69_4_6, dt69_4_6 2058 1,756,2058 18,42,4949 987
41 t69_4_7, dt69_4_7 2058 1,756,2058 18,42,4949 987
42 t69_5_0, dt69_5_0 2058 1,756,2058 18,42,4949 987
43 t69_5_1, dt69_5_1 2058 1,756,2058 18,42,4949 987
44 t69_5_2, dt69_5_2 2058 1,756,2058 18,42,4949 987
45 t69_5_3, dt69_5_3 2058 1,756,2058 18,42,4949 987
46 t69_5_4, dt69_5_4 2058 1,756,2058 18,42,4949 987
47 t69_5_5, dt69_5_5 2058 1,756,2058 18,42,4949 987
48 t69_5_6, dt69_5_6 2058 1,756,2058 18,42,4949 987
49 t69_5_7, dt69_5_7 2058 1,756,2058 18,42,4949 987
50 t69_6_0, dt69_6_0 2058 1,756,2058 18,42,4949 987
51 t69_6_1, dt69_6_1 2058 1,756,2058 18,42,4949 987
52 t69_6_2, dt69_6_2 2058 1,756,2058 18,42,4949 987
53 t69_6_3, dt69_6_3 2058 1,756,2058 18,42,4949 987
54 t69_6_4, dt69_6_4 2058 1,756,2058 18,42,4949 987
55 t69_6_5, dt69_6_5 2058 1,756,2058 18,42,4949 987
56 t69_6_6, dt69_6_6 2058 1,756,2058 18,42,4949 987
57 t69_6_7, dt69_6_7 2058 1,756,2058 18,42,4949 987
58 t69_7_0, dt69_7_0 2058 1,756,2058 18,42,4949 987
59 t69_7_1, dt69_7_1 2058 1,756,2058 18,42,4949 987
60 t69_7_2, dt69_7_2 2058 1,756,2058 18,42,4949 987
61 t69_7_3, dt69_7_3 2058 1,756,2058 18,42,4949 987
62 t69_7_4, dt69_7_4 2058 1,756,2058 18,42,4949 987
63 t69_7_5, dt69_7_5 2058 1,756,2058 18,42,4949 987
64 t69_7_6, dt69_7_6 2058 1,756,2058 18,42,4949 987
65 t69_7_7, dt69_7_7 2058 1,756,2058 18,42,4949 987
66 t69_8_0, dt69_8_0 2058 1,756,2058 18,42,4949 987
67 t69_8_1, dt69_8_1 2058 1,756,2058 18,42,4949 987
68 t69_8_2, dt69_8_2 2058 1,756,2058 18,42,4949 987
69 t69_8_3, dt69_8_3 2058 1,756,2058 18,42,4949 987
70 t69_9_0, dt69_9_0 2058 1,756,2058 18,42,4949 987
71 t69_9_1, dt69_9_1 2058 1,756,2058 18,42,4949 987
72 t69_9_2, dt69_9_2 2058 1,756,2058 18,42,4949 987
73 t69_9_3, dt69_9_3 2058 1,756,2058 18,42,4949 987
74 t69_10_0, dt69_10_0 2058 1,756,2058 18,42,4949 987
75 t69_10_1, dt69_10_1 2058 1,756,2058 18,42,4949 987
76 t69_10_2, dt69_10_2 2058 1,756,2058 18,42,4949 987
77 t69_10_3, dt69_10_3 2058 1,756,2058 18,42,4949 987
78 t69_11_0, dt69_11_0 2058 1,756,2058 18,42,4949 987
79 t69_11_1, dt69_11_1 2058 1,756,2058 18,42,4949 987
80 t69_11_2, dt69_11_2 2058 1,756,2058 18,42,4949 987
81 t69_11_3, dt69_11_3 2058 1,756,2058 18,42,4949 987
82 t69_12_0, dt69_12_0 2058 1,756,2058 18,42,4949 987
83 t69_12_1, dt69_12_1 2058 1,756,2058 18,42,4949 987
84 t69_12_2, dt69_12_2 2058 1,756,2058 18,42,4949 987
85 t69_12_3, dt69_12_3 2058 1,756,2058 18,42,4949 987
86 t69_13_0, dt69_13_0 2058 1,756,2058 18,42,4949 987
87 t69_13_1, dt69_13_1 2058 1,756,2058 18,42,4949 987
88 t69_13_2, dt69_13_2 2058 1,756,2058 18,42,4949 987
89 t69_13_3, dt69_13_3 2058 1,756,2058 18,42,4949 987
90 t69_14_0, dt69_14_0 2058 1,756,2058 18,42,4949 987
91 t69_14_1, dt69_14_1 2058 1,756,2058 18,42,4949 987
92 t69_14_2, dt69_14_2 2058 1,756,2058 18,42,4949 987
93 t69_14_3, dt69_14_3 2058 1,756,2058 18,42,4949 987
94 t69_15_0, dt69_15_0 2058 1,756,2058 18,42,4949 987
95 t69_15_1, dt69_15_1 2058 1,756,2058 18,42,4949 987
96 t69_16_0, dt69_16_0 2058 1,756,2058 18,42,4949 987
97 t69_16_1, dt69_16_1 2058 1,756,2058 18,42,4949 987
98 t69_17_0, dt69_17_0 2058 1,756,2058 18,42,4949 987
99 t69_17_1, dt69_17_1 2058 1,756,2058 18,42,4949 987
100 t69_18_0, dt69_18_0 2058 1,756,2058 18,42,4949 987
101 t69_18_1, dt69_18_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011