I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t67 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.
Following the table is a key to the table.
| Entry | Plane | |Autgp| | Point Orbits | Line Orbits | 7-rank |
|---|---|---|---|---|---|
| 1 | Translation Plane t67, dual dt67 | 57624 | 12,24,410,2401 | 1,492,984,19610 | 941 |
| 2 | t67_0_0, dt67_0_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 3 | t67_0_1, dt67_0_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 4 | t67_0_2, dt67_0_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 5 | t67_0_3, dt67_0_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 6 | t67_0_4, dt67_0_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 7 | t67_0_5, dt67_0_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 8 | t67_0_6, dt67_0_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 9 | t67_0_7, dt67_0_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 10 | t67_1_0, dt67_1_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 11 | t67_1_1, dt67_1_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 12 | t67_1_2, dt67_1_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 13 | t67_1_3, dt67_1_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 14 | t67_1_4, dt67_1_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 15 | t67_1_5, dt67_1_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 16 | t67_1_6, dt67_1_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 17 | t67_1_7, dt67_1_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 18 | t67_2_0, dt67_2_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 19 | t67_2_1, dt67_2_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 20 | t67_2_2, dt67_2_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 21 | t67_2_3, dt67_2_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 22 | t67_2_4, dt67_2_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 23 | t67_2_5, dt67_2_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 24 | t67_2_6, dt67_2_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 25 | t67_2_7, dt67_2_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 26 | t67_3_0, dt67_3_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 27 | t67_3_1, dt67_3_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 28 | t67_3_2, dt67_3_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 29 | t67_3_3, dt67_3_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 30 | t67_3_4, dt67_3_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 31 | t67_3_5, dt67_3_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 32 | t67_3_6, dt67_3_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 33 | t67_3_7, dt67_3_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 34 | t67_4_0, dt67_4_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 35 | t67_4_1, dt67_4_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 36 | t67_4_2, dt67_4_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 37 | t67_4_3, dt67_4_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 38 | t67_4_4, dt67_4_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 39 | t67_4_5, dt67_4_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 40 | t67_4_6, dt67_4_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 41 | t67_4_7, dt67_4_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 42 | t67_5_0, dt67_5_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 43 | t67_5_1, dt67_5_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 44 | t67_5_2, dt67_5_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 45 | t67_5_3, dt67_5_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 46 | t67_5_4, dt67_5_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 47 | t67_5_5, dt67_5_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 48 | t67_5_6, dt67_5_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 49 | t67_5_7, dt67_5_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 50 | t67_6_0, dt67_6_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 51 | t67_6_1, dt67_6_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 52 | t67_6_2, dt67_6_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 53 | t67_6_3, dt67_6_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 54 | t67_6_4, dt67_6_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 55 | t67_6_5, dt67_6_5 | 2058 | 1,756,2058 | 18,42,4949 | 985 |
| 56 | t67_6_6, dt67_6_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 57 | t67_6_7, dt67_6_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 58 | t67_7_0, dt67_7_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 59 | t67_7_1, dt67_7_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 60 | t67_7_2, dt67_7_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 61 | t67_7_3, dt67_7_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 62 | t67_7_4, dt67_7_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 63 | t67_7_5, dt67_7_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 64 | t67_7_6, dt67_7_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 65 | t67_7_7, dt67_7_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 66 | t67_8_0, dt67_8_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 67 | t67_8_1, dt67_8_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 68 | t67_8_2, dt67_8_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 69 | t67_8_3, dt67_8_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 70 | t67_8_4, dt67_8_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 71 | t67_8_5, dt67_8_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 72 | t67_8_6, dt67_8_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 73 | t67_8_7, dt67_8_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 74 | t67_9_0, dt67_9_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 75 | t67_9_1, dt67_9_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 76 | t67_9_2, dt67_9_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 77 | t67_9_3, dt67_9_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 78 | t67_9_4, dt67_9_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 79 | t67_9_5, dt67_9_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 80 | t67_9_6, dt67_9_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 81 | t67_9_7, dt67_9_7 | 2058 | 1,756,2058 | 18,42,4949 | 985 |
| 82 | t67_10_0, dt67_10_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 83 | t67_10_1, dt67_10_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 84 | t67_10_2, dt67_10_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 85 | t67_10_3, dt67_10_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 86 | t67_11_0, dt67_11_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 87 | t67_11_1, dt67_11_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 88 | t67_11_2, dt67_11_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 89 | t67_11_3, dt67_11_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 90 | t67_12_0, dt67_12_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 91 | t67_12_1, dt67_12_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 92 | t67_12_2, dt67_12_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 93 | t67_12_3, dt67_12_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 94 | t67_13_0, dt67_13_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 95 | t67_13_1, dt67_13_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 96 | t67_13_2, dt67_13_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 97 | t67_13_3, dt67_13_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 98 | t67_14_0, dt67_14_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 99 | t67_14_1, dt67_14_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 100 | t67_15_0, dt67_15_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 101 | t67_15_1, dt67_15_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.
/
revised February, 2011