Projective Planes of Order 49 Related to t58


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t58 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t58

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t58, dual dt58 115248 2,46,83,2401 1,98,1966,3923 941
2 t58_0_0, dt58_0_0 2058 1,756,2058 18,42,4949 987
3 t58_0_1, dt58_0_1 2058 1,756,2058 18,42,4949 987
4 t58_0_2, dt58_0_2 2058 1,756,2058 18,42,4949 987
5 t58_0_3, dt58_0_3 2058 1,756,2058 18,42,4949 987
6 t58_0_4, dt58_0_4 2058 1,756,2058 18,42,4949 987
7 t58_0_5, dt58_0_5 2058 1,756,2058 18,42,4949 987
8 t58_0_6, dt58_0_6 2058 1,756,2058 18,42,4949 987
9 t58_0_7, dt58_0_7 2058 1,756,2058 18,42,4949 987
10 t58_1_0, dt58_1_0 2058 1,756,2058 18,42,4949 987
11 t58_1_1, dt58_1_1 2058 1,756,2058 18,42,4949 987
12 t58_1_2, dt58_1_2 2058 1,756,2058 18,42,4949 987
13 t58_1_3, dt58_1_3 2058 1,756,2058 18,42,4949 987
14 t58_1_4, dt58_1_4 2058 1,756,2058 18,42,4949 987
15 t58_1_5, dt58_1_5 2058 1,756,2058 18,42,4949 987
16 t58_1_6, dt58_1_6 2058 1,756,2058 18,42,4949 987
17 t58_1_7, dt58_1_7 2058 1,756,2058 18,42,4949 987
18 t58_2_0, dt58_2_0 2058 1,756,2058 18,42,4949 987
19 t58_2_1, dt58_2_1 2058 1,756,2058 18,42,4949 987
20 t58_2_2, dt58_2_2 2058 1,756,2058 18,42,4949 987
21 t58_2_3, dt58_2_3 2058 1,756,2058 18,42,4949 987
22 t58_2_4, dt58_2_4 2058 1,756,2058 18,42,4949 987
23 t58_2_5, dt58_2_5 2058 1,756,2058 18,42,4949 987
24 t58_2_6, dt58_2_6 2058 1,756,2058 18,42,4949 987
25 t58_2_7, dt58_2_7 2058 1,756,2058 18,42,4949 987
26 t58_3_0, dt58_3_0 2058 1,756,2058 18,42,4949 987
27 t58_3_1, dt58_3_1 2058 1,756,2058 18,42,4949 987
28 t58_3_2, dt58_3_2 2058 1,756,2058 18,42,4949 987
29 t58_3_3, dt58_3_3 2058 1,756,2058 18,42,4949 987
30 t58_4_0, dt58_4_0 2058 1,756,2058 18,42,4949 987
31 t58_4_1, dt58_4_1 2058 1,756,2058 18,42,4949 987
32 t58_4_2, dt58_4_2 2058 1,756,2058 18,42,4949 987
33 t58_4_3, dt58_4_3 2058 1,756,2058 18,42,4949 987
34 t58_5_0, dt58_5_0 4116 1,78,1424,2058 12,23,42,497,9821 987
35 t58_5_1, dt58_5_1 2058 1,756,2058 18,42,4949 987
36 t58_5_2, dt58_5_2 2058 1,756,2058 18,42,4949 987
37 t58_5_3, dt58_5_3 2058 1,756,2058 18,42,4949 987
38 t58_5_4, dt58_5_4 4116 1,78,1424,2058 12,23,42,497,9821 987
39 t58_6_0, dt58_6_0 2058 1,756,2058 18,42,4949 987
40 t58_6_1, dt58_6_1 4116 1,78,1424,2058 12,23,42,497,9821 987
41 t58_6_2, dt58_6_2 2058 1,756,2058 18,42,4949 987
42 t58_6_3, dt58_6_3 2058 1,756,2058 18,42,4949 987
43 t58_6_4, dt58_6_4 4116 1,78,1424,2058 12,23,42,497,9821 987
44 t58_7_0, dt58_7_0 2058 1,756,2058 18,42,4949 987
45 t58_7_1, dt58_7_1 2058 1,756,2058 18,42,4949 987
46 t58_7_2, dt58_7_2 2058 1,756,2058 18,42,4949 987
47 t58_7_3, dt58_7_3 4116 1,78,1424,2058 12,23,42,497,9821 987
48 t58_7_4, dt58_7_4 4116 1,78,1424,2058 12,23,42,497,9821 987
49 t58_8_0, dt58_8_0 2058 1,756,2058 18,42,4949 987
50 t58_8_1, dt58_8_1 2058 1,756,2058 18,42,4949 987
51 t58_8_2, dt58_8_2 2058 1,756,2058 18,42,4949 987
52 t58_8_3, dt58_8_3 4116 1,78,1424,2058 12,23,42,497,9821 987
53 t58_8_4, dt58_8_4 4116 1,78,1424,2058 12,23,42,497,9821 987
54 t58_9_0, dt58_9_0 2058 1,756,2058 18,42,4949 987
55 t58_9_1, dt58_9_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011