Projective Planes of Order 49 Related to t45


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t45 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t45

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t45, dual dt45 230496 2,42,85,2401 1,98,1962,3925 937
2 t45_0_0, dt45_0_0 4116 1,78,1424,2058 12,23,42,497,9821 987
3 t45_0_1, dt45_0_1 2058 1,756,2058 18,42,4949 987
4 t45_0_2, dt45_0_2 2058 1,756,2058 18,42,4949 987
5 t45_0_3, dt45_0_3 2058 1,756,2058 18,42,4949 987
6 t45_0_4, dt45_0_4 4116 1,78,1424,2058 12,23,42,497,9821 987
7 t45_1_0, dt45_1_0 4116 1,78,1424,2058 12,23,42,497,9821 987
8 t45_1_1, dt45_1_1 2058 1,756,2058 18,42,4949 987
9 t45_1_2, dt45_1_2 2058 1,756,2058 18,42,4949 987
10 t45_1_3, dt45_1_3 2058 1,756,2058 18,42,4949 987
11 t45_1_4, dt45_1_4 4116 1,78,1424,2058 12,23,42,497,9821 987
12 t45_2_0, dt45_2_0 2058 1,756,2058 18,42,4949 987
13 t45_2_1, dt45_2_1 2058 1,756,2058 18,42,4949 987
14 t45_2_2, dt45_2_2 2058 1,756,2058 18,42,4949 987
15 t45_2_3, dt45_2_3 2058 1,756,2058 18,42,4949 987
16 t45_3_0, dt45_3_0 2058 1,756,2058 18,42,4949 987
17 t45_3_1, dt45_3_1 2058 1,756,2058 18,42,4949 987
18 t45_3_2, dt45_3_2 2058 1,756,2058 18,42,4949 987
19 t45_3_3, dt45_3_3 4116 1,78,1424,2058 12,23,42,497,9821 987
20 t45_3_4, dt45_3_4 4116 1,78,1424,2058 12,23,42,497,9821 987
21 t45_4_0, dt45_4_0 2058 1,756,2058 18,42,4949 987
22 t45_4_1, dt45_4_1 2058 1,756,2058 18,42,4949 987
23 t45_4_2, dt45_4_2 2058 1,756,2058 18,42,4949 987
24 t45_4_3, dt45_4_3 4116 1,78,1424,2058 12,23,42,497,9821 985
25 t45_4_4, dt45_4_4 4116 1,78,1424,2058 12,23,42,497,9821 987
26 t45_5_0, dt45_5_0 2058 1,756,2058 18,42,4949 987
27 t45_5_1, dt45_5_1 4116 1,78,1424,2058 12,23,42,497,9821 987
28 t45_5_2, dt45_5_2 4116 1,78,1424,2058 12,23,42,497,9821 985
29 t45_6_0, dt45_6_0 2058 1,756,2058 18,42,4949 987
30 t45_6_1, dt45_6_1 2058 1,756,2058 18,42,4949 987
31 t45_7_0, dt45_7_0 4116 1,78,1424,2058 18,42,49,9824 987
32 t45_7_1, dt45_7_1 8232 1,72,149,289,2058 12,23,42,49,986,1969 985
33 t45_7_2, dt45_7_2 8232 1,72,149,289,2058 12,23,42,49,986,1969 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011