Projective Planes of Order 49 Related to t32


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t32 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t32

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t32, dual dt32 115248 2,44,84,2401 1,98,1964,3924 941
2 t32_0_0, dt32_0_0 2058 1,756,2058 18,42,4949 987
3 t32_0_1, dt32_0_1 2058 1,756,2058 18,42,4949 987
4 t32_0_2, dt32_0_2 2058 1,756,2058 18,42,4949 987
5 t32_0_3, dt32_0_3 2058 1,756,2058 18,42,4949 987
6 t32_0_4, dt32_0_4 2058 1,756,2058 18,42,4949 987
7 t32_0_5, dt32_0_5 2058 1,756,2058 18,42,4949 987
8 t32_0_6, dt32_0_6 2058 1,756,2058 18,42,4949 987
9 t32_0_7, dt32_0_7 2058 1,756,2058 18,42,4949 987
10 t32_1_0, dt32_1_0 2058 1,756,2058 18,42,4949 987
11 t32_1_1, dt32_1_1 2058 1,756,2058 18,42,4949 987
12 t32_1_2, dt32_1_2 2058 1,756,2058 18,42,4949 987
13 t32_1_3, dt32_1_3 2058 1,756,2058 18,42,4949 987
14 t32_1_4, dt32_1_4 2058 1,756,2058 18,42,4949 987
15 t32_1_5, dt32_1_5 2058 1,756,2058 18,42,4949 987
16 t32_1_6, dt32_1_6 2058 1,756,2058 18,42,4949 987
17 t32_1_7, dt32_1_7 2058 1,756,2058 18,42,4949 987
18 t32_2_0, dt32_2_0 2058 1,756,2058 18,42,4949 987
19 t32_2_1, dt32_2_1 2058 1,756,2058 18,42,4949 987
20 t32_2_2, dt32_2_2 2058 1,756,2058 18,42,4949 987
21 t32_2_3, dt32_2_3 2058 1,756,2058 18,42,4949 987
22 t32_2_4, dt32_2_4 2058 1,756,2058 18,42,4949 987
23 t32_2_5, dt32_2_5 2058 1,756,2058 18,42,4949 987
24 t32_2_6, dt32_2_6 2058 1,756,2058 18,42,4949 987
25 t32_2_7, dt32_2_7 2058 1,756,2058 18,42,4949 987
26 t32_3_0, dt32_3_0 2058 1,756,2058 18,42,4949 987
27 t32_3_1, dt32_3_1 2058 1,756,2058 18,42,4949 987
28 t32_3_2, dt32_3_2 2058 1,756,2058 18,42,4949 987
29 t32_3_3, dt32_3_3 2058 1,756,2058 18,42,4949 987
30 t32_3_4, dt32_3_4 2058 1,756,2058 18,42,4949 987
31 t32_3_5, dt32_3_5 2058 1,756,2058 18,42,4949 987
32 t32_3_6, dt32_3_6 2058 1,756,2058 18,42,4949 987
33 t32_3_7, dt32_3_7 2058 1,756,2058 18,42,4949 987
34 t32_4_0, dt32_4_0 2058 1,756,2058 18,42,4949 987
35 t32_4_1, dt32_4_1 2058 1,756,2058 18,42,4949 987
36 t32_4_2, dt32_4_2 2058 1,756,2058 18,42,4949 987
37 t32_4_3, dt32_4_3 2058 1,756,2058 18,42,4949 987
38 t32_5_0, dt32_5_0 2058 1,756,2058 18,42,4949 987
39 t32_5_1, dt32_5_1 2058 1,756,2058 18,42,4949 987
40 t32_5_2, dt32_5_2 2058 1,756,2058 18,42,4949 987
41 t32_5_3, dt32_5_3 2058 1,756,2058 18,42,4949 987
42 t32_6_0, dt32_6_0 2058 1,756,2058 18,42,4949 987
43 t32_6_1, dt32_6_1 2058 1,756,2058 18,42,4949 987
44 t32_6_2, dt32_6_2 2058 1,756,2058 18,42,4949 987
45 t32_6_3, dt32_6_3 2058 1,756,2058 18,42,4949 987
46 t32_7_0, dt32_7_0 2058 1,756,2058 18,42,4949 987
47 t32_7_1, dt32_7_1 2058 1,756,2058 18,42,4949 987
48 t32_7_2, dt32_7_2 2058 1,756,2058 18,42,4949 987
49 t32_7_3, dt32_7_3 2058 1,756,2058 18,42,4949 987
50 t32_8_0, dt32_8_0 2058 1,756,2058 18,42,4949 987
51 t32_8_1, dt32_8_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised June, 2010