Projective Planes of Order 49 Related to t29


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t29 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t29

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t29, dual dt29 115248 25,48,8,2401 1,985,1968,392 941
2 t29_0_0, dt29_0_0 2058 1,756,2058 18,42,4949 987
3 t29_0_1, dt29_0_1 2058 1,756,2058 18,42,4949 987
4 t29_0_2, dt29_0_2 2058 1,756,2058 18,42,4949 987
5 t29_0_3, dt29_0_3 2058 1,756,2058 18,42,4949 987
6 t29_0_4, dt29_0_4 2058 1,756,2058 18,42,4949 987
7 t29_0_5, dt29_0_5 2058 1,756,2058 18,42,4949 987
8 t29_0_6, dt29_0_6 2058 1,756,2058 18,42,4949 987
9 t29_0_7, dt29_0_7 2058 1,756,2058 18,42,4949 987
10 t29_1_0, dt29_1_0 2058 1,756,2058 18,42,4949 987
11 t29_1_1, dt29_1_1 2058 1,756,2058 18,42,4949 987
12 t29_1_2, dt29_1_2 2058 1,756,2058 18,42,4949 987
13 t29_1_3, dt29_1_3 2058 1,756,2058 18,42,4949 987
14 t29_2_0, dt29_2_0 2058 1,756,2058 18,42,4949 987
15 t29_2_1, dt29_2_1 2058 1,756,2058 18,42,4949 987
16 t29_2_2, dt29_2_2 2058 1,756,2058 18,42,4949 987
17 t29_2_3, dt29_2_3 2058 1,756,2058 18,42,4949 987
18 t29_3_0, dt29_3_0 2058 1,756,2058 18,42,4949 987
19 t29_3_1, dt29_3_1 2058 1,756,2058 18,42,4949 987
20 t29_3_2, dt29_3_2 4116 1,78,1424,2058 12,23,42,497,9821 987
21 t29_3_3, dt29_3_3 2058 1,756,2058 18,42,4949 987
22 t29_3_4, dt29_3_4 4116 1,78,1424,2058 12,23,42,497,9821 987
23 t29_4_0, dt29_4_0 2058 1,756,2058 18,42,4949 987
24 t29_4_1, dt29_4_1 2058 1,756,2058 18,42,4949 987
25 t29_4_2, dt29_4_2 2058 1,756,2058 18,42,4949 987
26 t29_4_3, dt29_4_3 2058 1,756,2058 18,42,4949 987
27 t29_5_0, dt29_5_0 2058 1,756,2058 18,42,4949 987
28 t29_5_1, dt29_5_1 2058 1,756,2058 18,42,4949 987
29 t29_5_2, dt29_5_2 2058 1,756,2058 18,42,4949 987
30 t29_5_3, dt29_5_3 2058 1,756,2058 18,42,4949 987
31 t29_6_0, dt29_6_0 2058 1,756,2058 18,42,4949 987
32 t29_6_1, dt29_6_1 2058 1,756,2058 18,42,4949 987
33 t29_6_2, dt29_6_2 2058 1,756,2058 18,42,4949 987
34 t29_6_3, dt29_6_3 2058 1,756,2058 18,42,4949 987
35 t29_7_0, dt29_7_0 2058 1,756,2058 18,42,4949 987
36 t29_7_1, dt29_7_1 2058 1,756,2058 18,42,4949 987
37 t29_7_2, dt29_7_2 2058 1,756,2058 18,42,4949 987
38 t29_7_3, dt29_7_3 4116 1,78,1424,2058 12,23,42,497,9821 987
39 t29_7_4, dt29_7_4 4116 1,78,1424,2058 12,23,42,497,9821 987
40 t29_8_0, dt29_8_0 2058 1,756,2058 18,42,4949 987
41 t29_8_1, dt29_8_1 2058 1,756,2058 18,42,4949 987
42 t29_8_2, dt29_8_2 2058 1,756,2058 18,42,4949 987
43 t29_8_3, dt29_8_3 2058 1,756,2058 18,42,4949 987
44 t29_9_0, dt29_9_0 2058 1,756,2058 18,42,4949 987
45 t29_9_1, dt29_9_1 2058 1,756,2058 18,42,4949 987
46 t29_10_0, dt29_10_0 2058 1,756,2058 18,42,4949 987
47 t29_10_1, dt29_10_1 2058 1,756,2058 18,42,4949 987
48 t29_11_0, dt29_11_0 2058 1,756,2058 18,42,4949 987
49 t29_11_1, dt29_11_1 2058 1,756,2058 18,42,4949 987
50 t29_12_0, dt29_12_0 2058 1,756,2058 18,42,4949 987
51 t29_12_1, dt29_12_1 2058 1,756,2058 18,42,4949 987
52 t29_13_0, dt29_13_0 2058 1,756,2058 18,42,4949 987
53 t29_13_1, dt29_13_1 2058 1,756,2058 18,42,4949 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised June, 2010