Projective Planes of Order 49 Related to t26


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t26 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t26

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t26, dual dt26 172872 22,34,4,63,12,2401 1,982,1474,196,2943,588 939
2 t26_0_0, dt26_0_0 2058 1,756,2058 18,42,4949 987
3 t26_0_1, dt26_0_1 2058 1,756,2058 18,42,4949 987
4 t26_0_2, dt26_0_2 2058 1,756,2058 18,42,4949 987
5 t26_0_3, dt26_0_3 2058 1,756,2058 18,42,4949 987
6 t26_0_4, dt26_0_4 2058 1,756,2058 18,42,4949 987
7 t26_0_5, dt26_0_5 2058 1,756,2058 18,42,4949 987
8 t26_0_6, dt26_0_6 2058 1,756,2058 18,42,4949 987
9 t26_0_7, dt26_0_7 2058 1,756,2058 18,42,4949 987
10 t26_1_0, dt26_1_0 2058 1,756,2058 18,42,4949 987
11 t26_1_1, dt26_1_1 2058 1,756,2058 18,42,4949 987
12 t26_1_2, dt26_1_2 2058 1,756,2058 18,42,4949 987
13 t26_1_3, dt26_1_3 2058 1,756,2058 18,42,4949 987
14 t26_2_0, dt26_2_0 2058 1,756,2058 18,42,4949 987
15 t26_2_1, dt26_2_1 2058 1,756,2058 18,42,4949 987
16 t26_2_2, dt26_2_2 2058 1,756,2058 18,42,4949 987
17 t26_2_3, dt26_2_3 2058 1,756,2058 18,42,4949 987
18 t26_3_0, dt26_3_0 2058 1,756,2058 18,42,4949 987
19 t26_3_1, dt26_3_1 2058 1,756,2058 18,42,4949 987
20 t26_3_2, dt26_3_2 2058 1,756,2058 18,42,4949 987
21 t26_3_3, dt26_3_3 2058 1,756,2058 18,42,4949 987
22 t26_4_0, dt26_4_0 2058 1,756,2058 18,42,4949 987
23 t26_4_1, dt26_4_1 2058 1,756,2058 18,42,4949 987
24 t26_4_2, dt26_4_2 6174 1,78,2116,2058 12,32,42,497,14714 987
25 t26_4_3, dt26_4_3 6174 1,78,2116,2058 12,32,42,497,14714 987
26 t26_5_0, dt26_5_0 2058 1,756,2058 18,42,4949 987
27 t26_5_1, dt26_5_1 2058 1,756,2058 18,42,4949 987
28 t26_6_0, dt26_6_0 2058 1,756,2058 18,42,4949 987
29 t26_6_1, dt26_6_1 2058 1,756,2058 18,42,4949 987
30 t26_7_0, dt26_7_0 2058 1,756,2058 18,42,4949 987
31 t26_7_1, dt26_7_1 2058 1,756,2058 18,42,4949 987
32 t26_8_0, dt26_8_0 2058 1,756,2058 18,42,4949 987
33 t26_8_1, dt26_8_1 2058 1,756,2058 18,42,4949 987
34 t26_9_0, dt26_9_0 6174 1,78,2116,2058 12,32,42,497,14714 987
35 t26_9_1, dt26_9_1 2058 1,756,2058 18,42,4949 987
36 t26_10_0, dt26_10_0 2058 1,756,2058 18,42,4949 987
37 t26_10_1, dt26_10_1 6174 1,78,2116,2058 12,32,42,497,14714 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised June, 2010