I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t110 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.
Following the table is a key to the table.
Entry | Plane | |Autgp| | Point Orbits | Line Orbits | 7-rank |
---|---|---|---|---|---|
1 | Translation Plane t110, dual dt110 | 28812 | 110,220,2401 | 1,4910,9820 | 941 |
2 | t110_0_0, dt110_0_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
3 | t110_0_1, dt110_0_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
4 | t110_0_2, dt110_0_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
5 | t110_0_3, dt110_0_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
6 | t110_0_4, dt110_0_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
7 | t110_0_5, dt110_0_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
8 | t110_0_6, dt110_0_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
9 | t110_0_7, dt110_0_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
10 | t110_1_0, dt110_1_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
11 | t110_1_1, dt110_1_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
12 | t110_1_2, dt110_1_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
13 | t110_1_3, dt110_1_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
14 | t110_1_4, dt110_1_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
15 | t110_1_5, dt110_1_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
16 | t110_1_6, dt110_1_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
17 | t110_1_7, dt110_1_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
18 | t110_2_0, dt110_2_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
19 | t110_2_1, dt110_2_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
20 | t110_2_2, dt110_2_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
21 | t110_2_3, dt110_2_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
22 | t110_2_4, dt110_2_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
23 | t110_2_5, dt110_2_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
24 | t110_2_6, dt110_2_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
25 | t110_2_7, dt110_2_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
26 | t110_3_0, dt110_3_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
27 | t110_3_1, dt110_3_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
28 | t110_3_2, dt110_3_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
29 | t110_3_3, dt110_3_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
30 | t110_3_4, dt110_3_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
31 | t110_3_5, dt110_3_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
32 | t110_3_6, dt110_3_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
33 | t110_3_7, dt110_3_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
34 | t110_4_0, dt110_4_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
35 | t110_4_1, dt110_4_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
36 | t110_4_2, dt110_4_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
37 | t110_4_3, dt110_4_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
38 | t110_4_4, dt110_4_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
39 | t110_4_5, dt110_4_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
40 | t110_4_6, dt110_4_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
41 | t110_4_7, dt110_4_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
42 | t110_5_0, dt110_5_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
43 | t110_5_1, dt110_5_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
44 | t110_5_2, dt110_5_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
45 | t110_5_3, dt110_5_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
46 | t110_5_4, dt110_5_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
47 | t110_5_5, dt110_5_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
48 | t110_5_6, dt110_5_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
49 | t110_5_7, dt110_5_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
50 | t110_6_0, dt110_6_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
51 | t110_6_1, dt110_6_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
52 | t110_6_2, dt110_6_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
53 | t110_6_3, dt110_6_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
54 | t110_6_4, dt110_6_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
55 | t110_6_5, dt110_6_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
56 | t110_6_6, dt110_6_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
57 | t110_6_7, dt110_6_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
58 | t110_7_0, dt110_7_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
59 | t110_7_1, dt110_7_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
60 | t110_7_2, dt110_7_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
61 | t110_7_3, dt110_7_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
62 | t110_7_4, dt110_7_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
63 | t110_7_5, dt110_7_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
64 | t110_7_6, dt110_7_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
65 | t110_7_7, dt110_7_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
66 | t110_8_0, dt110_8_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
67 | t110_8_1, dt110_8_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
68 | t110_8_2, dt110_8_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
69 | t110_8_3, dt110_8_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
70 | t110_8_4, dt110_8_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
71 | t110_8_5, dt110_8_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
72 | t110_8_6, dt110_8_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
73 | t110_8_7, dt110_8_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
74 | t110_9_0, dt110_9_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
75 | t110_9_1, dt110_9_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
76 | t110_9_2, dt110_9_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
77 | t110_9_3, dt110_9_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
78 | t110_9_4, dt110_9_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
79 | t110_9_5, dt110_9_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
80 | t110_9_6, dt110_9_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
81 | t110_9_7, dt110_9_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
82 | t110_10_0, dt110_10_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
83 | t110_10_1, dt110_10_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
84 | t110_10_2, dt110_10_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
85 | t110_10_3, dt110_10_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
86 | t110_10_4, dt110_10_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
87 | t110_10_5, dt110_10_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
88 | t110_10_6, dt110_10_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
89 | t110_10_7, dt110_10_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
90 | t110_11_0, dt110_11_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
91 | t110_11_1, dt110_11_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
92 | t110_11_2, dt110_11_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
93 | t110_11_3, dt110_11_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
94 | t110_11_4, dt110_11_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
95 | t110_11_5, dt110_11_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
96 | t110_11_6, dt110_11_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
97 | t110_11_7, dt110_11_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
98 | t110_12_0, dt110_12_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
99 | t110_12_1, dt110_12_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
100 | t110_12_2, dt110_12_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
101 | t110_12_3, dt110_12_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
102 | t110_12_4, dt110_12_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
103 | t110_12_5, dt110_12_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
104 | t110_12_6, dt110_12_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
105 | t110_12_7, dt110_12_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
106 | t110_13_0, dt110_13_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
107 | t110_13_1, dt110_13_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
108 | t110_13_2, dt110_13_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
109 | t110_13_3, dt110_13_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
110 | t110_13_4, dt110_13_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
111 | t110_13_5, dt110_13_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
112 | t110_13_6, dt110_13_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
113 | t110_13_7, dt110_13_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
114 | t110_14_0, dt110_14_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
115 | t110_14_1, dt110_14_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
116 | t110_14_2, dt110_14_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
117 | t110_14_3, dt110_14_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
118 | t110_14_4, dt110_14_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
119 | t110_14_5, dt110_14_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
120 | t110_14_6, dt110_14_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
121 | t110_14_7, dt110_14_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
122 | t110_15_0, dt110_15_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
123 | t110_15_1, dt110_15_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
124 | t110_15_2, dt110_15_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
125 | t110_15_3, dt110_15_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
126 | t110_15_4, dt110_15_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
127 | t110_15_5, dt110_15_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
128 | t110_15_6, dt110_15_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
129 | t110_15_7, dt110_15_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
130 | t110_16_0, dt110_16_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
131 | t110_16_1, dt110_16_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
132 | t110_16_2, dt110_16_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
133 | t110_16_3, dt110_16_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
134 | t110_16_4, dt110_16_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
135 | t110_16_5, dt110_16_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
136 | t110_16_6, dt110_16_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
137 | t110_16_7, dt110_16_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
138 | t110_17_0, dt110_17_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
139 | t110_17_1, dt110_17_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
140 | t110_17_2, dt110_17_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
141 | t110_17_3, dt110_17_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
142 | t110_17_4, dt110_17_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
143 | t110_17_5, dt110_17_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
144 | t110_17_6, dt110_17_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
145 | t110_17_7, dt110_17_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
146 | t110_18_0, dt110_18_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
147 | t110_18_1, dt110_18_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
148 | t110_18_2, dt110_18_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
149 | t110_18_3, dt110_18_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
150 | t110_18_4, dt110_18_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
151 | t110_18_5, dt110_18_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
152 | t110_18_6, dt110_18_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
153 | t110_18_7, dt110_18_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
154 | t110_19_0, dt110_19_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
155 | t110_19_1, dt110_19_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
156 | t110_19_2, dt110_19_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
157 | t110_19_3, dt110_19_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
158 | t110_19_4, dt110_19_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
159 | t110_19_5, dt110_19_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
160 | t110_19_6, dt110_19_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
161 | t110_19_7, dt110_19_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
162 | t110_20_0, dt110_20_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
163 | t110_20_1, dt110_20_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
164 | t110_20_2, dt110_20_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
165 | t110_20_3, dt110_20_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
166 | t110_21_0, dt110_21_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
167 | t110_21_1, dt110_21_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
168 | t110_21_2, dt110_21_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
169 | t110_21_3, dt110_21_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
170 | t110_22_0, dt110_22_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
171 | t110_22_1, dt110_22_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
172 | t110_22_2, dt110_22_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
173 | t110_22_3, dt110_22_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
174 | t110_22_4, dt110_22_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
175 | t110_22_5, dt110_22_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
176 | t110_22_6, dt110_22_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
177 | t110_22_7, dt110_22_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
178 | t110_23_0, dt110_23_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
179 | t110_23_1, dt110_23_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
180 | t110_23_2, dt110_23_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
181 | t110_23_3, dt110_23_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
182 | t110_24_0, dt110_24_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
183 | t110_24_1, dt110_24_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
184 | t110_24_2, dt110_24_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
185 | t110_24_3, dt110_24_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
186 | t110_25_0, dt110_25_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
187 | t110_25_1, dt110_25_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
188 | t110_25_2, dt110_25_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
189 | t110_25_3, dt110_25_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
190 | t110_26_0, dt110_26_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
191 | t110_26_1, dt110_26_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
192 | t110_26_2, dt110_26_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
193 | t110_26_3, dt110_26_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
194 | t110_27_0, dt110_27_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
195 | t110_27_1, dt110_27_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
196 | t110_27_2, dt110_27_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
197 | t110_27_3, dt110_27_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
198 | t110_28_0, dt110_28_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
199 | t110_28_1, dt110_28_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
200 | t110_28_2, dt110_28_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
201 | t110_28_3, dt110_28_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
202 | t110_29_0, dt110_29_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
203 | t110_29_1, dt110_29_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
204 | t110_29_2, dt110_29_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
205 | t110_29_3, dt110_29_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.