I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t105 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.
Following the table is a key to the table.
| Entry | Plane | |Autgp| | Point Orbits | Line Orbits | 7-rank |
|---|---|---|---|---|---|
| 1 | Translation Plane t105, dual dt105 | 57624 | 14,27,48,2401 | 1,494,987,1968 | 937 |
| 2 | t105_0_0, dt105_0_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 3 | t105_0_1, dt105_0_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 4 | t105_0_2, dt105_0_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 5 | t105_0_3, dt105_0_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 6 | t105_0_4, dt105_0_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 7 | t105_0_5, dt105_0_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 8 | t105_0_6, dt105_0_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 9 | t105_0_7, dt105_0_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 10 | t105_1_0, dt105_1_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 11 | t105_1_1, dt105_1_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 12 | t105_1_2, dt105_1_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 13 | t105_1_3, dt105_1_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 14 | t105_1_4, dt105_1_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 15 | t105_1_5, dt105_1_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 16 | t105_1_6, dt105_1_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 17 | t105_1_7, dt105_1_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 18 | t105_2_0, dt105_2_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 19 | t105_2_1, dt105_2_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 20 | t105_2_2, dt105_2_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 21 | t105_2_3, dt105_2_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 22 | t105_2_4, dt105_2_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 23 | t105_2_5, dt105_2_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 24 | t105_2_6, dt105_2_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 25 | t105_2_7, dt105_2_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 26 | t105_3_0, dt105_3_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 27 | t105_3_1, dt105_3_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 28 | t105_3_2, dt105_3_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 29 | t105_3_3, dt105_3_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 30 | t105_3_4, dt105_3_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 31 | t105_3_5, dt105_3_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 32 | t105_3_6, dt105_3_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 33 | t105_3_7, dt105_3_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 34 | t105_4_0, dt105_4_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 35 | t105_4_1, dt105_4_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 36 | t105_4_2, dt105_4_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 37 | t105_4_3, dt105_4_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 38 | t105_4_4, dt105_4_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 39 | t105_4_5, dt105_4_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 40 | t105_4_6, dt105_4_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 41 | t105_4_7, dt105_4_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 42 | t105_5_0, dt105_5_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 43 | t105_5_1, dt105_5_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 44 | t105_5_2, dt105_5_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 45 | t105_5_3, dt105_5_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 46 | t105_5_4, dt105_5_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 47 | t105_5_5, dt105_5_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 48 | t105_5_6, dt105_5_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 49 | t105_5_7, dt105_5_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 50 | t105_6_0, dt105_6_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 51 | t105_6_1, dt105_6_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 52 | t105_6_2, dt105_6_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 53 | t105_6_3, dt105_6_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 54 | t105_6_4, dt105_6_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 55 | t105_6_5, dt105_6_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 56 | t105_6_6, dt105_6_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 57 | t105_6_7, dt105_6_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 58 | t105_7_0, dt105_7_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 59 | t105_7_1, dt105_7_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 60 | t105_7_2, dt105_7_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 61 | t105_7_3, dt105_7_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 62 | t105_7_4, dt105_7_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 63 | t105_7_5, dt105_7_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 64 | t105_7_6, dt105_7_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 65 | t105_7_7, dt105_7_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 66 | t105_8_0, dt105_8_0 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 67 | t105_8_1, dt105_8_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 68 | t105_8_2, dt105_8_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 69 | t105_8_3, dt105_8_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 70 | t105_8_4, dt105_8_4 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 985 |
| 71 | t105_9_0, dt105_9_0 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 72 | t105_9_1, dt105_9_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 73 | t105_9_2, dt105_9_2 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 74 | t105_9_3, dt105_9_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 75 | t105_9_4, dt105_9_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 76 | t105_10_0, dt105_10_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 77 | t105_10_1, dt105_10_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 78 | t105_10_2, dt105_10_2 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 79 | t105_10_3, dt105_10_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 80 | t105_10_4, dt105_10_4 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 81 | t105_11_0, dt105_11_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 82 | t105_11_1, dt105_11_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 83 | t105_11_2, dt105_11_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 84 | t105_11_3, dt105_11_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 85 | t105_12_0, dt105_12_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 86 | t105_12_1, dt105_12_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 87 | t105_12_2, dt105_12_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 88 | t105_12_3, dt105_12_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 89 | t105_13_0, dt105_13_0 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 90 | t105_13_1, dt105_13_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 91 | t105_13_2, dt105_13_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 92 | t105_13_3, dt105_13_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 93 | t105_13_4, dt105_13_4 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 94 | t105_14_0, dt105_14_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 95 | t105_14_1, dt105_14_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 96 | t105_14_2, dt105_14_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 97 | t105_14_3, dt105_14_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 98 | t105_15_0, dt105_15_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 99 | t105_15_1, dt105_15_1 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 100 | t105_15_2, dt105_15_2 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 101 | t105_16_0, dt105_16_0 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 102 | t105_16_1, dt105_16_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 103 | t105_16_2, dt105_16_2 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 104 | t105_17_0, dt105_17_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 105 | t105_17_1, dt105_17_1 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 985 |
| 106 | t105_17_2, dt105_17_2 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 107 | t105_18_0, dt105_18_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 108 | t105_18_1, dt105_18_1 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 985 |
| 109 | t105_18_2, dt105_18_2 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.
/
revised February, 2011