Projective Planes of Order 49 Related to t105


I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t105 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.

Following the table is a key to the table.


Known Projective Planes of Order 49 Related to t105

Entry Plane |Autgp| Point Orbits Line Orbits 7-rank
1 Translation Plane t105, dual dt105 57624 14,27,48,2401 1,494,987,1968 937
2 t105_0_0, dt105_0_0 2058 1,756,2058 18,42,4949 987
3 t105_0_1, dt105_0_1 2058 1,756,2058 18,42,4949 987
4 t105_0_2, dt105_0_2 2058 1,756,2058 18,42,4949 987
5 t105_0_3, dt105_0_3 2058 1,756,2058 18,42,4949 987
6 t105_0_4, dt105_0_4 2058 1,756,2058 18,42,4949 987
7 t105_0_5, dt105_0_5 2058 1,756,2058 18,42,4949 987
8 t105_0_6, dt105_0_6 2058 1,756,2058 18,42,4949 987
9 t105_0_7, dt105_0_7 2058 1,756,2058 18,42,4949 987
10 t105_1_0, dt105_1_0 2058 1,756,2058 18,42,4949 987
11 t105_1_1, dt105_1_1 2058 1,756,2058 18,42,4949 987
12 t105_1_2, dt105_1_2 2058 1,756,2058 18,42,4949 987
13 t105_1_3, dt105_1_3 2058 1,756,2058 18,42,4949 987
14 t105_1_4, dt105_1_4 2058 1,756,2058 18,42,4949 987
15 t105_1_5, dt105_1_5 2058 1,756,2058 18,42,4949 987
16 t105_1_6, dt105_1_6 2058 1,756,2058 18,42,4949 987
17 t105_1_7, dt105_1_7 2058 1,756,2058 18,42,4949 987
18 t105_2_0, dt105_2_0 2058 1,756,2058 18,42,4949 987
19 t105_2_1, dt105_2_1 2058 1,756,2058 18,42,4949 987
20 t105_2_2, dt105_2_2 2058 1,756,2058 18,42,4949 987
21 t105_2_3, dt105_2_3 2058 1,756,2058 18,42,4949 987
22 t105_2_4, dt105_2_4 2058 1,756,2058 18,42,4949 987
23 t105_2_5, dt105_2_5 2058 1,756,2058 18,42,4949 987
24 t105_2_6, dt105_2_6 2058 1,756,2058 18,42,4949 987
25 t105_2_7, dt105_2_7 2058 1,756,2058 18,42,4949 987
26 t105_3_0, dt105_3_0 2058 1,756,2058 18,42,4949 987
27 t105_3_1, dt105_3_1 2058 1,756,2058 18,42,4949 987
28 t105_3_2, dt105_3_2 2058 1,756,2058 18,42,4949 987
29 t105_3_3, dt105_3_3 2058 1,756,2058 18,42,4949 987
30 t105_3_4, dt105_3_4 2058 1,756,2058 18,42,4949 987
31 t105_3_5, dt105_3_5 2058 1,756,2058 18,42,4949 987
32 t105_3_6, dt105_3_6 2058 1,756,2058 18,42,4949 987
33 t105_3_7, dt105_3_7 2058 1,756,2058 18,42,4949 987
34 t105_4_0, dt105_4_0 2058 1,756,2058 18,42,4949 987
35 t105_4_1, dt105_4_1 2058 1,756,2058 18,42,4949 987
36 t105_4_2, dt105_4_2 2058 1,756,2058 18,42,4949 987
37 t105_4_3, dt105_4_3 2058 1,756,2058 18,42,4949 987
38 t105_4_4, dt105_4_4 2058 1,756,2058 18,42,4949 987
39 t105_4_5, dt105_4_5 2058 1,756,2058 18,42,4949 987
40 t105_4_6, dt105_4_6 2058 1,756,2058 18,42,4949 987
41 t105_4_7, dt105_4_7 2058 1,756,2058 18,42,4949 987
42 t105_5_0, dt105_5_0 2058 1,756,2058 18,42,4949 987
43 t105_5_1, dt105_5_1 2058 1,756,2058 18,42,4949 987
44 t105_5_2, dt105_5_2 2058 1,756,2058 18,42,4949 987
45 t105_5_3, dt105_5_3 2058 1,756,2058 18,42,4949 987
46 t105_5_4, dt105_5_4 2058 1,756,2058 18,42,4949 987
47 t105_5_5, dt105_5_5 2058 1,756,2058 18,42,4949 987
48 t105_5_6, dt105_5_6 2058 1,756,2058 18,42,4949 987
49 t105_5_7, dt105_5_7 2058 1,756,2058 18,42,4949 987
50 t105_6_0, dt105_6_0 2058 1,756,2058 18,42,4949 987
51 t105_6_1, dt105_6_1 2058 1,756,2058 18,42,4949 987
52 t105_6_2, dt105_6_2 2058 1,756,2058 18,42,4949 987
53 t105_6_3, dt105_6_3 2058 1,756,2058 18,42,4949 987
54 t105_6_4, dt105_6_4 2058 1,756,2058 18,42,4949 987
55 t105_6_5, dt105_6_5 2058 1,756,2058 18,42,4949 987
56 t105_6_6, dt105_6_6 2058 1,756,2058 18,42,4949 987
57 t105_6_7, dt105_6_7 2058 1,756,2058 18,42,4949 987
58 t105_7_0, dt105_7_0 2058 1,756,2058 18,42,4949 987
59 t105_7_1, dt105_7_1 2058 1,756,2058 18,42,4949 987
60 t105_7_2, dt105_7_2 2058 1,756,2058 18,42,4949 987
61 t105_7_3, dt105_7_3 2058 1,756,2058 18,42,4949 987
62 t105_7_4, dt105_7_4 2058 1,756,2058 18,42,4949 987
63 t105_7_5, dt105_7_5 2058 1,756,2058 18,42,4949 987
64 t105_7_6, dt105_7_6 2058 1,756,2058 18,42,4949 987
65 t105_7_7, dt105_7_7 2058 1,756,2058 18,42,4949 987
66 t105_8_0, dt105_8_0 4116 1,78,1424,2058 12,23,42,497,9821 987
67 t105_8_1, dt105_8_1 2058 1,756,2058 18,42,4949 987
68 t105_8_2, dt105_8_2 2058 1,756,2058 18,42,4949 987
69 t105_8_3, dt105_8_3 2058 1,756,2058 18,42,4949 987
70 t105_8_4, dt105_8_4 4116 1,78,1424,2058 12,23,42,497,9821 985
71 t105_9_0, dt105_9_0 4116 1,78,1424,2058 12,23,42,497,9821 987
72 t105_9_1, dt105_9_1 2058 1,756,2058 18,42,4949 987
73 t105_9_2, dt105_9_2 4116 1,78,1424,2058 12,23,42,497,9821 987
74 t105_9_3, dt105_9_3 2058 1,756,2058 18,42,4949 987
75 t105_9_4, dt105_9_4 2058 1,756,2058 18,42,4949 987
76 t105_10_0, dt105_10_0 2058 1,756,2058 18,42,4949 987
77 t105_10_1, dt105_10_1 2058 1,756,2058 18,42,4949 987
78 t105_10_2, dt105_10_2 4116 1,78,1424,2058 12,23,42,497,9821 987
79 t105_10_3, dt105_10_3 2058 1,756,2058 18,42,4949 987
80 t105_10_4, dt105_10_4 4116 1,78,1424,2058 12,23,42,497,9821 987
81 t105_11_0, dt105_11_0 2058 1,756,2058 18,42,4949 987
82 t105_11_1, dt105_11_1 2058 1,756,2058 18,42,4949 987
83 t105_11_2, dt105_11_2 2058 1,756,2058 18,42,4949 987
84 t105_11_3, dt105_11_3 2058 1,756,2058 18,42,4949 987
85 t105_12_0, dt105_12_0 2058 1,756,2058 18,42,4949 987
86 t105_12_1, dt105_12_1 2058 1,756,2058 18,42,4949 987
87 t105_12_2, dt105_12_2 2058 1,756,2058 18,42,4949 987
88 t105_12_3, dt105_12_3 2058 1,756,2058 18,42,4949 987
89 t105_13_0, dt105_13_0 4116 1,78,1424,2058 12,23,42,497,9821 987
90 t105_13_1, dt105_13_1 2058 1,756,2058 18,42,4949 987
91 t105_13_2, dt105_13_2 2058 1,756,2058 18,42,4949 987
92 t105_13_3, dt105_13_3 2058 1,756,2058 18,42,4949 987
93 t105_13_4, dt105_13_4 4116 1,78,1424,2058 12,23,42,497,9821 987
94 t105_14_0, dt105_14_0 2058 1,756,2058 18,42,4949 987
95 t105_14_1, dt105_14_1 2058 1,756,2058 18,42,4949 987
96 t105_14_2, dt105_14_2 2058 1,756,2058 18,42,4949 987
97 t105_14_3, dt105_14_3 2058 1,756,2058 18,42,4949 987
98 t105_15_0, dt105_15_0 2058 1,756,2058 18,42,4949 987
99 t105_15_1, dt105_15_1 4116 1,78,1424,2058 12,23,42,497,9821 987
100 t105_15_2, dt105_15_2 4116 1,78,1424,2058 12,23,42,497,9821 987
101 t105_16_0, dt105_16_0 4116 1,78,1424,2058 12,23,42,497,9821 987
102 t105_16_1, dt105_16_1 2058 1,756,2058 18,42,4949 987
103 t105_16_2, dt105_16_2 4116 1,78,1424,2058 12,23,42,497,9821 987
104 t105_17_0, dt105_17_0 2058 1,756,2058 18,42,4949 987
105 t105_17_1, dt105_17_1 4116 1,78,1424,2058 12,23,42,497,9821 985
106 t105_17_2, dt105_17_2 4116 1,78,1424,2058 12,23,42,497,9821 987
107 t105_18_0, dt105_18_0 2058 1,756,2058 18,42,4949 987
108 t105_18_1, dt105_18_1 4116 1,78,1424,2058 12,23,42,497,9821 985
109 t105_18_2, dt105_18_2 4116 1,78,1424,2058 12,23,42,497,9821 987

Key to the table

Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.


/ revised February, 2011