I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t104 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.
Following the table is a key to the table.
Entry | Plane | |Autgp| | Point Orbits | Line Orbits | 7-rank |
---|---|---|---|---|---|
1 | Translation Plane t104, dual dt104 | 57624 | 12,210,47,2401 | 1,492,9810,1967 | 941 |
2 | t104_0_0, dt104_0_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
3 | t104_0_1, dt104_0_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
4 | t104_0_2, dt104_0_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
5 | t104_0_3, dt104_0_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
6 | t104_0_4, dt104_0_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
7 | t104_0_5, dt104_0_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
8 | t104_0_6, dt104_0_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
9 | t104_0_7, dt104_0_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
10 | t104_1_0, dt104_1_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
11 | t104_1_1, dt104_1_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
12 | t104_1_2, dt104_1_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
13 | t104_1_3, dt104_1_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
14 | t104_1_4, dt104_1_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
15 | t104_1_5, dt104_1_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
16 | t104_1_6, dt104_1_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
17 | t104_1_7, dt104_1_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
18 | t104_2_0, dt104_2_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
19 | t104_2_1, dt104_2_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
20 | t104_2_2, dt104_2_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
21 | t104_2_3, dt104_2_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
22 | t104_2_4, dt104_2_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
23 | t104_2_5, dt104_2_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
24 | t104_2_6, dt104_2_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
25 | t104_2_7, dt104_2_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
26 | t104_3_0, dt104_3_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
27 | t104_3_1, dt104_3_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
28 | t104_3_2, dt104_3_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
29 | t104_3_3, dt104_3_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
30 | t104_3_4, dt104_3_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
31 | t104_3_5, dt104_3_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
32 | t104_3_6, dt104_3_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
33 | t104_3_7, dt104_3_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
34 | t104_4_0, dt104_4_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
35 | t104_4_1, dt104_4_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
36 | t104_4_2, dt104_4_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
37 | t104_4_3, dt104_4_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
38 | t104_4_4, dt104_4_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
39 | t104_4_5, dt104_4_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
40 | t104_4_6, dt104_4_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
41 | t104_4_7, dt104_4_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
42 | t104_5_0, dt104_5_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
43 | t104_5_1, dt104_5_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
44 | t104_5_2, dt104_5_2 | 2058 | 1,756,2058 | 18,42,4949 | 985 |
45 | t104_5_3, dt104_5_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
46 | t104_5_4, dt104_5_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
47 | t104_5_5, dt104_5_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
48 | t104_5_6, dt104_5_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
49 | t104_5_7, dt104_5_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
50 | t104_6_0, dt104_6_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
51 | t104_6_1, dt104_6_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
52 | t104_6_2, dt104_6_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
53 | t104_6_3, dt104_6_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
54 | t104_6_4, dt104_6_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
55 | t104_6_5, dt104_6_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
56 | t104_6_6, dt104_6_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
57 | t104_6_7, dt104_6_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
58 | t104_7_0, dt104_7_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
59 | t104_7_1, dt104_7_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
60 | t104_7_2, dt104_7_2 | 2058 | 1,756,2058 | 18,42,4949 | 985 |
61 | t104_7_3, dt104_7_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
62 | t104_8_0, dt104_8_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
63 | t104_8_1, dt104_8_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
64 | t104_8_2, dt104_8_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
65 | t104_8_3, dt104_8_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
66 | t104_9_0, dt104_9_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
67 | t104_9_1, dt104_9_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
68 | t104_9_2, dt104_9_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
69 | t104_9_3, dt104_9_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
70 | t104_10_0, dt104_10_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
71 | t104_10_1, dt104_10_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
72 | t104_10_2, dt104_10_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
73 | t104_10_3, dt104_10_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
74 | t104_11_0, dt104_11_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
75 | t104_11_1, dt104_11_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
76 | t104_11_2, dt104_11_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
77 | t104_11_3, dt104_11_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
78 | t104_12_0, dt104_12_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
79 | t104_12_1, dt104_12_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
80 | t104_12_2, dt104_12_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
81 | t104_12_3, dt104_12_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
82 | t104_13_0, dt104_13_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
83 | t104_13_1, dt104_13_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
84 | t104_13_2, dt104_13_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
85 | t104_13_3, dt104_13_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
86 | t104_14_0, dt104_14_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
87 | t104_14_1, dt104_14_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
88 | t104_14_2, dt104_14_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
89 | t104_14_3, dt104_14_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
90 | t104_15_0, dt104_15_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
91 | t104_15_1, dt104_15_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
92 | t104_15_2, dt104_15_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
93 | t104_15_3, dt104_15_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
94 | t104_16_0, dt104_16_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
95 | t104_16_1, dt104_16_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
96 | t104_16_2, dt104_16_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
97 | t104_16_3, dt104_16_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
98 | t104_17_0, dt104_17_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
99 | t104_17_1, dt104_17_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
100 | t104_18_0, dt104_18_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
101 | t104_18_1, dt104_18_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.