I am currently compiling a list of known projective planes of order 49. As part of this enumeration, here are listed the plane t103 and all known planes of order 49 obtained from it by dualizing and deriving. Coming soon: also planes related by the method of lifting quotients. This list is currently incomplete; check back later for a complete enumeration.
Following the table is a key to the table.
| Entry | Plane | |Autgp| | Point Orbits | Line Orbits | 7-rank |
|---|---|---|---|---|---|
| 1 | Translation Plane t103, dual dt103 | 57624 | 27,49,2401 | 1,987,1969 | 941 |
| 2 | t103_0_0, dt103_0_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 3 | t103_0_1, dt103_0_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 4 | t103_0_2, dt103_0_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 5 | t103_0_3, dt103_0_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 6 | t103_0_4, dt103_0_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 7 | t103_0_5, dt103_0_5 | 2058 | 1,756,2058 | 18,42,4949 | 985 |
| 8 | t103_0_6, dt103_0_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 9 | t103_0_7, dt103_0_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 10 | t103_1_0, dt103_1_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 11 | t103_1_1, dt103_1_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 12 | t103_1_2, dt103_1_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 13 | t103_1_3, dt103_1_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 14 | t103_1_4, dt103_1_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 15 | t103_1_5, dt103_1_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 16 | t103_1_6, dt103_1_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 17 | t103_1_7, dt103_1_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 18 | t103_2_0, dt103_2_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 19 | t103_2_1, dt103_2_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 20 | t103_2_2, dt103_2_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 21 | t103_2_3, dt103_2_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 22 | t103_2_4, dt103_2_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 23 | t103_2_5, dt103_2_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 24 | t103_2_6, dt103_2_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 25 | t103_2_7, dt103_2_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 26 | t103_3_0, dt103_3_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 27 | t103_3_1, dt103_3_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 28 | t103_3_2, dt103_3_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 29 | t103_3_3, dt103_3_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 30 | t103_3_4, dt103_3_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 31 | t103_3_5, dt103_3_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 32 | t103_3_6, dt103_3_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 33 | t103_3_7, dt103_3_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 34 | t103_4_0, dt103_4_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 35 | t103_4_1, dt103_4_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 36 | t103_4_2, dt103_4_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 37 | t103_4_3, dt103_4_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 38 | t103_4_4, dt103_4_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 39 | t103_4_5, dt103_4_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 40 | t103_4_6, dt103_4_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 41 | t103_4_7, dt103_4_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 42 | t103_5_0, dt103_5_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 43 | t103_5_1, dt103_5_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 44 | t103_5_2, dt103_5_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 45 | t103_5_3, dt103_5_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 46 | t103_5_4, dt103_5_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 47 | t103_5_5, dt103_5_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 48 | t103_5_6, dt103_5_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 49 | t103_5_7, dt103_5_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 50 | t103_6_0, dt103_6_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 51 | t103_6_1, dt103_6_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 52 | t103_6_2, dt103_6_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 53 | t103_6_3, dt103_6_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 54 | t103_6_4, dt103_6_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 55 | t103_6_5, dt103_6_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 56 | t103_6_6, dt103_6_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 57 | t103_6_7, dt103_6_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 58 | t103_7_0, dt103_7_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 59 | t103_7_1, dt103_7_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 60 | t103_7_2, dt103_7_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 61 | t103_7_3, dt103_7_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 62 | t103_7_4, dt103_7_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 63 | t103_7_5, dt103_7_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 64 | t103_7_6, dt103_7_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 65 | t103_7_7, dt103_7_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 66 | t103_8_0, dt103_8_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 67 | t103_8_1, dt103_8_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 68 | t103_8_2, dt103_8_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 69 | t103_8_3, dt103_8_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 70 | t103_8_4, dt103_8_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 71 | t103_8_5, dt103_8_5 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 72 | t103_8_6, dt103_8_6 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 73 | t103_8_7, dt103_8_7 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 74 | t103_9_0, dt103_9_0 | 4116 | 1,78,1424,2058 | 18,42,49,9824 | 987 |
| 75 | t103_9_1, dt103_9_1 | 4116 | 1,78,1424,2058 | 18,42,49,9824 | 987 |
| 76 | t103_9_2, dt103_9_2 | 4116 | 1,78,1424,2058 | 18,42,49,9824 | 987 |
| 77 | t103_9_3, dt103_9_3 | 4116 | 1,78,1424,2058 | 18,42,49,9824 | 987 |
| 78 | t103_9_4, dt103_9_4 | 4116 | 1,78,1424,2058 | 18,42,49,9824 | 987 |
| 79 | t103_9_5, dt103_9_5 | 4116 | 1,78,1424,2058 | 18,42,49,9824 | 987 |
| 80 | t103_9_6, dt103_9_6 | 4116 | 1,78,1424,2058 | 18,42,49,9824 | 987 |
| 81 | t103_9_7, dt103_9_7 | 4116 | 1,78,1424,2058 | 18,42,49,9824 | 987 |
| 82 | t103_10_0, dt103_10_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 83 | t103_10_1, dt103_10_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 84 | t103_10_2, dt103_10_2 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 985 |
| 85 | t103_10_3, dt103_10_3 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 86 | t103_10_4, dt103_10_4 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 87 | t103_11_0, dt103_11_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 88 | t103_11_1, dt103_11_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 89 | t103_11_2, dt103_11_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 90 | t103_11_3, dt103_11_3 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 985 |
| 91 | t103_11_4, dt103_11_4 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 985 |
| 92 | t103_12_0, dt103_12_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 93 | t103_12_1, dt103_12_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 94 | t103_12_2, dt103_12_2 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 95 | t103_12_3, dt103_12_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 96 | t103_12_4, dt103_12_4 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 97 | t103_13_0, dt103_13_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 98 | t103_13_1, dt103_13_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 99 | t103_13_2, dt103_13_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 100 | t103_13_3, dt103_13_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 101 | t103_14_0, dt103_14_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 102 | t103_14_1, dt103_14_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 103 | t103_14_2, dt103_14_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 104 | t103_14_3, dt103_14_3 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 105 | t103_15_0, dt103_15_0 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 106 | t103_15_1, dt103_15_1 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 107 | t103_15_2, dt103_15_2 | 2058 | 1,756,2058 | 18,42,4949 | 987 |
| 108 | t103_15_3, dt103_15_3 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 987 |
| 109 | t103_15_4, dt103_15_4 | 4116 | 1,78,1424,2058 | 12,23,42,497,9821 | 985 |
Only one line is displayed for both a plane and its dual, an asterisk (*) in the first column indicating that the plane is self-dual. Each line includes the following information and isomorphism invariants for each plane.
/
revised February, 2011