v | k | λ | μ | rf | sg | comments | |
---|---|---|---|---|---|---|---|
+ | 701 | 350 | 174 | 175 | 12.738350 | –13.738350 | Paley(701); 2-graph\* |
! | 703 | 72 | 36 | 4 | 3437 | –2665 | Triangular graph T(38) |
630 | 561 | 595 | 1665 | –3537 | pg(18,34,17)? | ||
? | 703 | 182 | 81 | 35 | 4937 | –3665 | |
520 | 372 | 420 | 2665 | –5037 | |||
? | 704 | 37 | 0 | 2 | 5407 | –7296 | |
666 | 630 | 630 | 6296 | –6407 | |||
? | 704 | 190 | 54 | 50 | 14285 | –10418 | pg(19,9,5)? |
513 | 372 | 378 | 9418 | –15285 | |||
? | 704 | 228 | 52 | 84 | 4627 | –3676 | |
475 | 330 | 300 | 3576 | –5627 | |||
? | 705 | 256 | 80 | 100 | 6564 | –26140 | |
448 | 291 | 273 | 25140 | –7564 | |||
? | 705 | 308 | 145 | 126 | 26140 | –7564 | |
396 | 213 | 234 | 6564 | –27140 | |||
- | 705 | 352 | 175 | 176 | 12.776352 | –13.776352 | Conf |
+ | 709 | 354 | 176 | 177 | 12.814354 | –13.814354 | Paley(709); 2-graph\* |
? | 711 | 70 | 5 | 7 | 7395 | –9315 | |
640 | 576 | 576 | 8315 | –8395 | |||
? | 711 | 230 | 85 | 69 | 23158 | –7552 | |
480 | 318 | 336 | 6552 | –24158 | |||
- | 713 | 356 | 177 | 178 | 12.851356 | –13.851356 | Conf |
? | 714 | 92 | 10 | 12 | 8391 | –10322 | |
621 | 540 | 540 | 9322 | –9391 | |||
? | 714 | 161 | 40 | 35 | 14272 | –9441 | |
552 | 425 | 432 | 8441 | –15272 | |||
? | 714 | 217 | 56 | 70 | 7527 | –21186 | |
496 | 348 | 336 | 20186 | –8527 | |||
? | 714 | 248 | 97 | 80 | 24153 | –7560 | |
465 | 296 | 315 | 6560 | –25153 | |||
? | 715 | 120 | 20 | 20 | 10351 | –10363 | pg(12,9,2)? |
594 | 493 | 495 | 9363 | –11351 | |||
? | 715 | 154 | 33 | 33 | 11350 | –11364 | |
560 | 438 | 440 | 10364 | –12350 | |||
? | 715 | 224 | 48 | 80 | 4637 | –3677 | |
490 | 345 | 315 | 3577 | –5637 | |||
? | 715 | 228 | 65 | 76 | 8494 | –19220 | pg(12,18,4)? |
486 | 333 | 324 | 18220 | –9494 | |||
? | 715 | 266 | 105 | 95 | 19220 | –9494 | |
448 | 276 | 288 | 8494 | –20220 | |||
? | 715 | 272 | 102 | 104 | 12374 | –14340 | |
442 | 273 | 273 | 13340 | –13374 | |||
- | 717 | 358 | 178 | 179 | 12.888358 | –13.888358 | Conf |
? | 721 | 192 | 48 | 52 | 10412 | –14308 | |
528 | 387 | 385 | 13308 | –11412 | |||
? | 721 | 220 | 69 | 66 | 14308 | –11412 | |
500 | 345 | 350 | 10412 | –15308 | |||
? | 721 | 324 | 147 | 144 | 15308 | –12412 | S(2,12,309)? |
396 | 215 | 220 | 11412 | –16308 | |||
- | 721 | 360 | 179 | 180 | 12.926360 | –13.926360 | Conf |
? | 722 | 103 | 12 | 15 | 8412 | –11309 | |
618 | 529 | 528 | 10309 | –9412 | |||
? | 722 | 105 | 16 | 15 | 10336 | –9385 | |
616 | 525 | 528 | 8385 | –11336 | |||
? | 722 | 309 | 116 | 144 | 5618 | –33103 | |
412 | 246 | 220 | 32103 | –6618 | |||
? | 722 | 336 | 170 | 144 | 32105 | –6616 | |
385 | 192 | 220 | 5616 | –33105 | |||
- | 725 | 148 | 3 | 37 | 3666 | –3758 | Krein2 |
576 | 464 | 432 | 3658 | –4666 | Krein1 | ||
+ | 725 | 196 | 63 | 49 | 21174 | –7550 | S(2,7,175) |
528 | 380 | 396 | 6550 | –22174 | pg(24,21,18)? | ||
? | 725 | 362 | 180 | 181 | 12.963362 | –13.963362 | 2-graph\*? |
- | 726 | 29 | 4 | 1 | 7261 | –4464 | mu=1 |
696 | 667 | 672 | 3464 | –8261 | |||
? | 726 | 116 | 10 | 20 | 6522 | –16203 | |
609 | 512 | 504 | 15203 | –7522 | |||
? | 726 | 125 | 28 | 20 | 15225 | –7500 | |
600 | 494 | 504 | 6500 | –16225 | |||
? | 726 | 140 | 22 | 28 | 8455 | –14270 | pg(10,13,2)? |
585 | 472 | 468 | 13270 | –9455 | |||
? | 726 | 145 | 32 | 28 | 13290 | –9435 | |
580 | 462 | 468 | 8435 | –14290 | |||
+ | 726 | 145 | 44 | 25 | 24120 | –5605 | S(2,5,121) |
580 | 459 | 480 | 4605 | –25120 | |||
- | 726 | 195 | 88 | 39 | 5236 | –3689 | Absolute bound |
530 | 373 | 424 | 2689 | –5336 | Absolute bound | ||
- | 726 | 200 | 10 | 72 | 2700 | –6425 | Krein2; Absolute bound |
525 | 396 | 336 | 6325 | –3700 | Krein1; Absolute bound | ||
? | 726 | 203 | 40 | 63 | 5609 | –28116 | |
522 | 381 | 360 | 27116 | –6609 | |||
? | 726 | 225 | 84 | 63 | 27125 | –6600 | |
500 | 337 | 360 | 5600 | –28125 | |||
- | 726 | 261 | 132 | 72 | 6329 | –3696 | Absolute bound |
464 | 274 | 336 | 2696 | –6429 | Absolute bound | ||
? | 726 | 270 | 87 | 108 | 6585 | –27140 | pg(10,26,4)? |
455 | 292 | 273 | 26140 | –7585 | |||
? | 726 | 290 | 127 | 108 | 26145 | –7580 | |
435 | 252 | 273 | 6580 | –27145 | |||
? | 726 | 300 | 95 | 144 | 3680 | –5245 | |
425 | 268 | 221 | 5145 | –4680 | |||
? | 726 | 325 | 164 | 130 | 3975 | –5650 | |
400 | 204 | 240 | 4650 | –4075 | pg(10,39,6)? | ||
! | 729 | 52 | 25 | 2 | 2552 | –2676 | 272; from a partial spread of 3-spaces: projective ternary [26,6] code with weights 9, 18 |
676 | 625 | 650 | 1676 | –2652 | OA(27,26) | ||
+ | 729 | 78 | 27 | 6 | 2478 | –3650 | OA(27,3); from a partial spread of 3-spaces: projective ternary [39,6] code with weights 18, 27 |
650 | 577 | 600 | 2650 | –2578 | OA(27,25) | ||
+ | 729 | 88 | 7 | 11 | 7440 | –11288 | Godsil(q=9,r=5); GQ(8,10) |
640 | 562 | 560 | 10288 | –8440 | |||
+ | 729 | 104 | 31 | 12 | 23104 | –4624 | OA(27,4); Bilin2x3(3); from a Baer subplane: projective 9-ary [13,3] code with weights 9, 12; from a partial spread of 3-spaces: projective ternary [52,6] code with weights 27, 36 |
624 | 531 | 552 | 3624 | –24104 | OA(27,24) | ||
! | 729 | 112 | 1 | 20 | 4616 | –23112 | 36.2.L3(4).2 (rk 4) - Hill cap: projective ternary [56,6] code with weights 36, 45; Bondarenko-Radchenko |
616 | 523 | 506 | 22112 | –5616 | |||
+ | 729 | 130 | 37 | 20 | 22130 | –5598 | OA(27,5); from a partial spread of 3-spaces: projective ternary [65,6] code with weights 36, 45 |
598 | 487 | 506 | 4598 | –23130 | OA(27,23) | ||
? | 729 | 140 | 13 | 30 | 5588 | –22140 | |
588 | 477 | 462 | 21140 | –6588 | |||
+ | 729 | 156 | 45 | 30 | 21156 | –6572 | OA(27,6); from a partial spread of 3-spaces: projective ternary [78,6] code with weights 45, 54 |
572 | 445 | 462 | 5572 | –22156 | OA(27,22) | ||
- | 729 | 160 | 88 | 20 | 7018 | –2710 | Absolute bound |
568 | 427 | 497 | 1710 | –7118 | Absolute bound | ||
+ | 729 | 168 | 27 | 42 | 6560 | –21168 | pg(8,20,2) - Mathon; Gulliver: projective ternary [84,6] code with weights 54, 63 |
560 | 433 | 420 | 20168 | –7560 | |||
- | 729 | 182 | 1 | 60 | 2702 | –6126 | Krein2; Absolute bound |
546 | 423 | 366 | 6026 | –3702 | Krein1; Absolute bound | ||
+ | 729 | 182 | 55 | 42 | 20182 | –7546 | OA(27,7); from a partial spread of 3-spaces: projective ternary [91,6] code with weights 54, 63 |
546 | 405 | 420 | 6546 | –21182 | OA(27,21) | ||
+ | 729 | 196 | 43 | 56 | 7532 | –20196 | Gulliver: projective ternary [98,6] code with weights 63, 72 |
532 | 391 | 380 | 19196 | –8532 | |||
? | 729 | 208 | 37 | 68 | 4648 | –3580 | |
520 | 379 | 350 | 3480 | –5648 | |||
+ | 729 | 208 | 67 | 56 | 19208 | –8520 | OA(27,8); from a partial spread of Baer subplanes: projective 9-ary [26,3] code with weights 21, 24; Brouwer(q=3,d=2,e=3,+); from a partial spread of 3-spaces: projective ternary [104,6] code with weights 63, 72 |
520 | 367 | 380 | 7520 | –20208 | OA(27,20) | ||
+ | 729 | 224 | 61 | 72 | 8504 | –19224 | from a unital: projective 9-ary [28,3] code with weights 24, 27; VO–(6,3) affine polar graph |
504 | 351 | 342 | 18224 | –9504 | |||
+ | 729 | 234 | 81 | 72 | 18234 | –9494 | OA(27,9); Wallis (AR(3,3)+S(2,3,27)); VNO+(6,3) affine polar graph; from a partial spread of 3-spaces: projective ternary [117,6] code with weights 72, 81 |
494 | 331 | 342 | 8494 | –19234 | OA(27,19) | ||
? | 729 | 248 | 67 | 93 | 5620 | –31108 | pg(8,30,3)? |
480 | 324 | 300 | 30108 | –6620 | |||
+ | 729 | 252 | 81 | 90 | 9476 | –18252 | VNO–(6,3) affine polar graph; projective ternary [126,6] code with weights 81, 90 |
476 | 313 | 306 | 17252 | –10476 | |||
+ | 729 | 260 | 97 | 90 | 17260 | –10468 | OA(27,10); Wallis2 (AR(3,3)+S(2,3,27)); VO+(6,3) affine polar graph; from a partial spread of 3-spaces: projective ternary [130,6] code with weights 81, 90 |
468 | 297 | 306 | 9468 | –18260 | OA(27,18) | ||
- | 729 | 280 | 31 | 155 | 1720 | –1258 | Krein2; Absolute bound |
448 | 322 | 200 | 1248 | –2720 | Krein1; Absolute bound | ||
+ | 729 | 280 | 103 | 110 | 10448 | –17280 | 35-set of type (2,5) in PG(2,9) - De Resmini: projective 9-ary [35,3] code with weights 30, 33 |
448 | 277 | 272 | 16280 | –11448 | |||
? | 729 | 280 | 127 | 95 | 3780 | –5648 | |
448 | 262 | 296 | 4648 | –3880 | |||
+ | 729 | 286 | 115 | 110 | 16286 | –11442 | OA(27,11); from a partial spread of 3-spaces: projective ternary [143,6] code with weights 90, 99 |
442 | 265 | 272 | 10442 | –17286 | OA(27,17) | ||
+ | 729 | 308 | 127 | 132 | 11420 | –16308 | Gulliver: projective ternary [154,6] code with weights 99, 108 |
420 | 243 | 240 | 15308 | –12420 | |||
+ | 729 | 312 | 135 | 132 | 15312 | –12416 | OA(27,12); from a partial spread of Baer subplanes: projective 9-ary [39,3] code with weights 33, 36; from a partial spread of 3-spaces: projective ternary [156,6] code with weights 99, 108 |
416 | 235 | 240 | 11416 | –16312 | OA(27,16) | ||
- | 729 | 312 | 171 | 105 | 6926 | –3702 | Absolute bound |
416 | 208 | 276 | 2702 | –7026 | Absolute bound | ||
? | 729 | 320 | 166 | 120 | 5048 | –4680 | |
408 | 207 | 255 | 3680 | –5148 | pg(8,50,5)? | ||
+ | 729 | 328 | 127 | 164 | 4656 | –4172 | Godsil(q=9,r=2); pg(8,40,4)?; 2-graph\* |
400 | 235 | 200 | 4072 | –5656 | 2-graph\* | ||
+ | 729 | 336 | 153 | 156 | 12392 | –15336 | Penttila & Royle: projective 9-ary [42,3] code with weights 36, 39 |
392 | 211 | 210 | 14336 | –13392 | |||
+ | 729 | 338 | 157 | 156 | 14338 | –13390 | OA(27,13); Pasechnik(27); from a partial spread of 3-spaces: projective ternary [169,6] code with weights 108, 117 |
390 | 207 | 210 | 12390 | –15338 | OA(27,15) | ||
+ | 729 | 364 | 181 | 182 | 13364 | –14364 | Paley(729); OA(27,14); 2-graph\* |
? | 730 | 153 | 24 | 34 | 7510 | –17219 | pg(9,16,2)? |
576 | 456 | 448 | 16219 | –8510 | |||
? | 730 | 324 | 123 | 160 | 4657 | –4172 | 2-graph? |
405 | 240 | 205 | 4072 | –5657 | 2-graph? | ||
+ | 730 | 351 | 168 | 169 | 13365 | –14364 | switch OA(27,14)+*; switch skewhad2+*; 2-graph |
378 | 195 | 196 | 13364 | –14365 | S(2,14,365)?; 2-graph | ||
+ | 730 | 360 | 195 | 160 | 4073 | –5656 | 2-graph |
369 | 168 | 205 | 4656 | –4173 | pg(9,40,5)?; Taylor 2-graph for U3(9) | ||
? | 731 | 250 | 105 | 75 | 3585 | –5645 | |
480 | 304 | 336 | 4645 | –3685 | |||
? | 732 | 238 | 92 | 70 | 28122 | –6609 | |
493 | 324 | 348 | 5609 | –29122 | |||
+ | 733 | 366 | 182 | 183 | 13.037366 | –14.037366 | Paley(733); 2-graph\* |
? | 735 | 318 | 109 | 159 | 3689 | –5345 | pg(6,52,3)?; 2-graph\*? |
416 | 256 | 208 | 5245 | –4689 | 2-graph\*? | ||
? | 735 | 360 | 172 | 180 | 10459 | –18275 | pg(20,17,10)?; 2-graph\*? |
374 | 193 | 187 | 17275 | –11459 | 2-graph\*? | ||
- | 736 | 42 | 8 | 2 | 10207 | –4528 | μ=2 (Brouwer-Neumaier) |
693 | 652 | 660 | 3528 | –11207 | |||
? | 736 | 60 | 14 | 4 | 14160 | –4575 | |
675 | 618 | 630 | 3575 | –15160 | |||
? | 736 | 105 | 20 | 14 | 13252 | –7483 | pg(15,6,2)? |
630 | 538 | 546 | 6483 | –14252 | |||
? | 736 | 168 | 32 | 40 | 8483 | –16252 | |
567 | 438 | 432 | 15252 | –9483 | |||
? | 736 | 180 | 68 | 36 | 3669 | –4666 | |
555 | 410 | 444 | 3666 | –3769 | pg(15,36,12)? | ||
? | 736 | 195 | 50 | 52 | 11390 | –13345 | pg(15,12,4)? |
540 | 396 | 396 | 12345 | –12390 | |||
? | 736 | 270 | 114 | 90 | 30115 | –6620 | |
465 | 284 | 310 | 5620 | –31115 | pg(15,30,10)? | ||
? | 736 | 294 | 122 | 114 | 18252 | –10483 | |
441 | 260 | 270 | 9483 | –19252 | |||
? | 736 | 315 | 106 | 156 | 3690 | –5345 | 2-graph? |
420 | 260 | 212 | 5245 | –4690 | 2-graph? | ||
? | 736 | 330 | 140 | 154 | 8528 | –22207 | pg(15,21,7)? |
405 | 228 | 216 | 21207 | –9528 | |||
? | 736 | 350 | 162 | 170 | 10460 | –18275 | 2-graph? |
385 | 204 | 198 | 17275 | –11460 | 2-graph? | ||
? | 736 | 357 | 176 | 170 | 17276 | –11459 | 2-graph? |
378 | 190 | 198 | 10459 | –18276 | 2-graph? | ||
? | 736 | 364 | 204 | 156 | 5246 | –4689 | 2-graph? |
371 | 162 | 212 | 3689 | –5346 | pg(7,52,4)?; 2-graph? | ||
+ | 737 | 96 | 35 | 9 | 2966 | –3670 | S(2,3,67) |
640 | 552 | 580 | 2670 | –3066 | |||
- | 737 | 368 | 183 | 184 | 13.074368 | –14.074368 | Conf |
! | 741 | 74 | 37 | 4 | 3538 | –2702 | Triangular graph T(39) |
666 | 595 | 630 | 1702 | –3638 | |||
? | 741 | 180 | 39 | 45 | 9455 | –15285 | pg(12,14,3)? |
560 | 424 | 420 | 14285 | –10455 | |||
? | 741 | 260 | 91 | 91 | 13360 | –13380 | |
480 | 310 | 312 | 12380 | –14360 | |||
? | 741 | 320 | 130 | 144 | 8532 | –22208 | |
420 | 243 | 231 | 21208 | –9532 | |||
- | 741 | 370 | 184 | 185 | 13.111370 | –14.111370 | Conf |
? | 742 | 221 | 60 | 68 | 9476 | –17265 | pg(13,16,4)? |
520 | 366 | 360 | 16265 | –10476 | |||
? | 742 | 255 | 92 | 85 | 17265 | –10476 | |
486 | 315 | 324 | 9476 | –18265 | S(2,18,477)? | ||
? | 742 | 285 | 92 | 120 | 5636 | –33105 | |
456 | 290 | 264 | 32105 | –6636 | |||
? | 742 | 351 | 180 | 153 | 33105 | –6636 | |
390 | 191 | 220 | 5636 | –34105 | |||
? | 745 | 372 | 185 | 186 | 13.147372 | –14.147372 | 2-graph\*? |
? | 748 | 180 | 53 | 40 | 20187 | –7560 | |
567 | 426 | 441 | 6560 | –21187 | S(2,21,561)? | ||
- | 749 | 374 | 186 | 187 | 13.184374 | –14.184374 | Conf |
? | 750 | 112 | 20 | 16 | 12294 | –8455 | pg(14,7,2)? |
637 | 540 | 546 | 7455 | –13294 | |||
? | 750 | 210 | 55 | 60 | 10441 | –15308 | pg(14,14,4)? |
539 | 388 | 385 | 14308 | –11441 | |||
? | 750 | 214 | 63 | 60 | 14321 | –11428 | |
535 | 380 | 385 | 10428 | –15321 | |||
? | 750 | 308 | 118 | 132 | 8539 | –22210 | pg(14,21,6)? |
441 | 264 | 252 | 21210 | –9539 | |||
? | 750 | 321 | 144 | 132 | 21214 | –9535 | |
428 | 238 | 252 | 8535 | –22214 | |||
? | 750 | 343 | 168 | 147 | 28140 | –7609 | |
406 | 209 | 232 | 6609 | –29140 | pg(14,28,8)? |