| | v | k | λ | μ |
rf | sg | comments |
| + | 601 | 300 | 149 | 150 | 11.758300 | –12.758300 |
Paley(601); 2-graph\* |
| ? | 605 | 156 | 43 | 39 | 13240 | –9364 |
|
| | | 448 | 330 | 336 | 8364 | –14240 |
|
| ? | 605 | 280 | 117 | 140 | 5504 | –28100 |
pg(10,27,5)?; 2-graph\*? |
| | | 324 | 183 | 162 | 27100 | –6504 |
2-graph\*? |
| ? | 605 | 302 | 150 | 151 | 11.798302 | –12.798302 |
2-graph\*? |
| ? | 606 | 105 | 4 | 21 | 4504 | –21101 |
|
| | | 500 | 415 | 400 | 20101 | –5504 |
|
| ? | 606 | 275 | 112 | 135 | 5505 | –28100 |
2-graph? |
| | | 330 | 189 | 168 | 27100 | –6505 |
2-graph? |
| ? | 606 | 297 | 156 | 135 | 27101 | –6504 |
2-graph? |
| | | 308 | 145 | 168 | 5504 | –28101 |
pg(11,27,6)?; 2-graph? |
| ? | 609 | 224 | 91 | 77 | 21144 | –7464 |
|
| | | 384 | 236 | 252 | 6464 | –22144 |
|
| - | 609 | 228 | 117 | 66 | 5428 | –3580 |
Absolute bound |
| | | 380 | 217 | 270 | 2580 | –5528 |
Absolute bound |
| - | 609 | 304 | 151 | 152 | 11.839304 | –12.839304 |
Conf |
| + | 610 | 87 | 32 | 9 | 2660 | –3549 |
S(2,3,61) |
| | | 522 | 443 | 468 | 2549 | –2760 |
|
| ? | 611 | 250 | 105 | 100 | 15234 | –10376 |
S(2,10,235)? |
| | | 360 | 209 | 216 | 9376 | –16234 |
|
| - | 612 | 156 | 15 | 48 | 3560 | –3651 |
Krein2 |
| | | 455 | 346 | 315 | 3551 | –4560 |
Krein1 |
| + | 612 | 156 | 50 | 36 | 20135 | –6476 |
S(2,6,136) |
| | | 455 | 334 | 350 | 5476 | –21135 |
|
| ? | 612 | 195 | 66 | 60 | 15221 | –9390 |
|
| | | 416 | 280 | 288 | 8390 | –16221 |
|
| + | 613 | 306 | 152 | 153 | 11.879306 | –12.879306 |
Paley(613); 2-graph\* |
| ? | 615 | 294 | 133 | 147 | 7450 | –21164 |
pg(14,20,7)?; 2-graph\*? |
| | | 320 | 172 | 160 | 20164 | –8450 |
2-graph\*? |
| ? | 616 | 75 | 2 | 10 | 5440 | –13175 |
|
| | | 540 | 474 | 468 | 12175 | –6440 |
|
| ? | 616 | 120 | 20 | 24 | 8363 | –12252 |
pg(10,11,2)? |
| | | 495 | 398 | 396 | 11252 | –9363 |
|
| - | 616 | 135 | 6 | 36 | 3560 | –3355 |
Krein2 |
| | | 480 | 380 | 352 | 3255 | –4560 |
Krein1 |
| ? | 616 | 164 | 42 | 44 | 10328 | –12287 |
|
| | | 451 | 330 | 330 | 11287 | –11328 |
|
| ? | 616 | 165 | 44 | 44 | 11300 | –11315 |
|
| | | 450 | 328 | 330 | 10315 | –12300 |
|
| ? | 616 | 205 | 90 | 57 | 3755 | –4560 |
|
| | | 410 | 261 | 296 | 3560 | –3855 |
|
| ? | 616 | 240 | 89 | 96 | 9384 | –16231 |
pg(15,15,6)? |
| | | 375 | 230 | 225 | 15231 | –10384 |
|
| ? | 616 | 270 | 108 | 126 | 6483 | –24132 |
|
| | | 345 | 200 | 184 | 23132 | –7483 |
|
| ? | 616 | 287 | 126 | 140 | 7451 | –21164 |
2-graph? |
| | | 328 | 180 | 168 | 20164 | –8451 |
2-graph? |
| ? | 616 | 300 | 152 | 140 | 20165 | –8450 |
2-graph? |
| | | 315 | 154 | 168 | 7450 | –21165 |
2-graph? |
| + | 617 | 308 | 153 | 154 | 11.920308 | –12.920308 |
Paley(617); 2-graph\* |
| ? | 621 | 60 | 3 | 6 | 6368 | –9252 |
|
| | | 560 | 505 | 504 | 8252 | –7368 |
|
| ? | 621 | 130 | 31 | 26 | 13230 | –8390 |
|
| | | 490 | 385 | 392 | 7390 | –14230 |
|
| ? | 621 | 144 | 24 | 36 | 6459 | –18161 |
pg(8,17,2)? |
| | | 476 | 367 | 357 | 17161 | –7459 |
|
| - | 621 | 210 | 45 | 84 | 3574 | –4246 |
Krein2 |
| | | 410 | 283 | 246 | 4146 | –4574 |
Krein1 |
| ? | 621 | 220 | 79 | 77 | 13275 | –11345 |
|
| | | 400 | 256 | 260 | 10345 | –14275 |
|
| ? | 621 | 300 | 123 | 165 | 3575 | –4545 |
|
| | | 320 | 184 | 144 | 4445 | –4575 |
|
| - | 621 | 310 | 154 | 155 | 11.960310 | –12.960310 |
Conf |
| ? | 624 | 98 | 22 | 14 | 14182 | –6441 |
|
| | | 525 | 440 | 450 | 5441 | –15182 |
|
| ? | 624 | 161 | 28 | 46 | 5506 | –23117 |
pg(7,22,2)? |
| | | 462 | 346 | 330 | 22117 | –6506 |
|
| ? | 624 | 280 | 132 | 120 | 20168 | –8455 |
|
| | | 343 | 182 | 196 | 7455 | –21168 |
|
| ! | 625 | 48 | 23 | 2 | 2348 | –2576 |
252; from a partial spread: projective 5-ary [12,4] code with weights 5, 10 |
| | | 576 | 529 | 552 | 1576 | –2448 |
OA(25,24) |
| + | 625 | 72 | 25 | 6 | 2272 | –3552 |
OA(25,3); from a partial spread: projective 5-ary [18,4] code with weights 10, 15 |
| | | 552 | 485 | 506 | 2552 | –2372 |
OA(25,23) |
| + | 625 | 96 | 29 | 12 | 2196 | –4528 |
OA(25,4); Brouwer(q=5,d=2,e=2,+); from a partial spread: projective 5-ary [24,4] code with weights 15, 20 |
| | | 528 | 443 | 462 | 3528 | –2296 |
OA(25,22) |
| + | 625 | 104 | 3 | 20 | 4520 | –21104 |
VO–(4,5) affine polar graph; projective 5-ary [26,4] code with weights 20, 25 |
| | | 520 | 435 | 420 | 20104 | –5520 |
|
| ? | 625 | 112 | 15 | 21 | 7400 | –13224 |
|
| | | 512 | 420 | 416 | 12224 | –8400 |
|
| + | 625 | 120 | 35 | 20 | 20120 | –5504 |
OA(25,5); Wallis (AR(5,1)+S(2,5,25)); from a partial spread: projective 5-ary [30,4] code with weights 20, 25 |
| | | 504 | 403 | 420 | 4504 | –21120 |
OA(25,21) |
| ? | 625 | 130 | 15 | 30 | 5494 | –20130 |
|
| | | 494 | 393 | 380 | 19130 | –6494 |
|
| + | 625 | 144 | 43 | 30 | 19144 | –6480 |
OA(25,6); Bilin2x2(5); Wallis2 (AR(5,1)+S(2,5,25)); VO+(4,5) affine polar graph; from a partial spread: projective 5-ary [36,4] code with weights 25, 30 |
| | | 480 | 365 | 380 | 5480 | –20144 |
OA(25,20) |
| + | 625 | 156 | 29 | 42 | 6468 | –19156 |
Dissett: Bouyukliev-Fack-Willems-Winne: projective 5-ary [39,4] code with weights 30, 35 |
| | | 468 | 353 | 342 | 18156 | –7468 |
|
| + | 625 | 168 | 53 | 42 | 18168 | –7456 |
OA(25,7); from a partial spread: projective 5-ary [42,4] code with weights 30, 35 |
| | | 456 | 329 | 342 | 6456 | –19168 |
OA(25,19) |
| ? | 625 | 182 | 45 | 56 | 7442 | –18182 |
|
| | | 442 | 315 | 306 | 17182 | –8442 |
|
| - | 625 | 192 | 20 | 76 | 2600 | –5824 |
Krein2; Absolute bound |
| | | 432 | 315 | 261 | 5724 | –3600 |
Krein1; Absolute bound |
| + | 625 | 192 | 65 | 56 | 17192 | –8432 |
OA(25,8); from a partial spread: projective 5-ary [48,4] code with weights 35, 40 |
| | | 432 | 295 | 306 | 7432 | –18192 |
OA(25,18) |
| + | 625 | 208 | 63 | 72 | 8416 | –17208 |
vanLint-Schrijver(1); CK - CY1: projective 5-ary [52,4] code with weights 40, 45 |
| | | 416 | 279 | 272 | 16208 | –9416 |
vanLint-Schrijver(2) |
| + | 625 | 216 | 79 | 72 | 16216 | –9408 |
OA(25,9); from a partial spread: projective 5-ary [54,4] code with weights 40, 45 |
| | | 408 | 263 | 272 | 8408 | –17216 |
OA(25,17) |
| ? | 625 | 234 | 83 | 90 | 9390 | –16234 |
|
| | | 390 | 245 | 240 | 15234 | –10390 |
|
| + | 625 | 240 | 95 | 90 | 15240 | –10384 |
OA(25,10); VNO+(4,5) affine polar graph; from a partial spread: projective 5-ary [60,4] code with weights 45, 50 |
| | | 384 | 233 | 240 | 9384 | –16240 |
OA(25,16) |
| ? | 625 | 246 | 119 | 82 | 4150 | –4574 |
|
| | | 378 | 213 | 252 | 3574 | –4250 |
pg(9,41,6)? |
| + | 625 | 260 | 105 | 110 | 10364 | –15260 |
VNO–(4,5) affine polar graph; projective 5-ary [65,4] code with weights 50, 55 |
| | | 364 | 213 | 210 | 14260 | –11364 |
|
| + | 625 | 264 | 113 | 110 | 14264 | –11360 |
OA(25,11); from a partial spread: projective 5-ary [66,4] code with weights 50, 55 |
| | | 360 | 205 | 210 | 10360 | –15264 |
OA(25,15) |
| ? | 625 | 286 | 129 | 132 | 11338 | –14286 |
|
| | | 338 | 183 | 182 | 13286 | –12338 |
|
| + | 625 | 288 | 133 | 132 | 13288 | –12336 |
OA(25,12); from a partial spread: projective 5-ary [72,4] code with weights 55, 60 |
| | | 336 | 179 | 182 | 11336 | –14288 |
OA(25,14) |
| - | 625 | 312 | 125 | 186 | 2600 | –6324 |
Absolute bound |
| | | 312 | 185 | 126 | 6224 | –3600 |
Absolute bound |
| + | 625 | 312 | 155 | 156 | 12312 | –13312 |
Paley(625); OA(25,13); 2-graph\* |
| + | 626 | 300 | 143 | 144 | 12313 | –13312 |
switch OA(25,13)+*; 2-graph |
| | | 325 | 168 | 169 | 12312 | –13313 |
S(2,13,313)?; 2-graph |
| ? | 629 | 314 | 156 | 157 | 12.040314 | –13.040314 |
2-graph\*? |
| ? | 630 | 37 | 4 | 2 | 7259 | –5370 |
|
| | | 592 | 556 | 560 | 4370 | –8259 |
|
| ? | 630 | 68 | 1 | 8 | 5440 | –12189 |
|
| | | 561 | 500 | 495 | 11189 | –6440 |
|
| ! | 630 | 68 | 34 | 4 | 3235 | –2594 |
Triangular graph T(36) |
| | | 561 | 496 | 528 | 1594 | –3335 |
pg(17,32,16)? |
| + | 630 | 85 | 20 | 10 | 15153 | –5476 |
pg(17,4,2) - Haemers |
| | | 544 | 468 | 480 | 4476 | –16153 |
|
| ? | 630 | 111 | 12 | 21 | 6444 | –15185 |
|
| | | 518 | 427 | 420 | 14185 | –7444 |
|
| ? | 630 | 119 | 28 | 21 | 14204 | –7425 |
pg(17,6,3)? |
| | | 510 | 411 | 420 | 6425 | –15204 |
|
| ? | 630 | 185 | 40 | 60 | 5518 | –25111 |
|
| | | 444 | 318 | 300 | 24111 | –6518 |
|
| ? | 630 | 204 | 78 | 60 | 24119 | –6510 |
|
| | | 425 | 280 | 300 | 5510 | –25119 |
pg(17,24,12)? |
| ? | 630 | 272 | 124 | 112 | 20170 | –8459 |
|
| | | 357 | 196 | 210 | 7459 | –21170 |
pg(17,20,10)? |
| - | 633 | 316 | 157 | 158 | 12.080316 | –13.080316 |
Conf |
| ? | 636 | 250 | 95 | 100 | 10371 | –15264 |
|
| | | 385 | 234 | 231 | 14264 | –11371 |
|
| ? | 637 | 60 | 11 | 5 | 11195 | –5441 |
|
| | | 576 | 520 | 528 | 4441 | –12195 |
|
| ? | 637 | 96 | 5 | 16 | 5480 | –16156 |
|
| | | 540 | 459 | 450 | 15156 | –6480 |
|
| ? | 637 | 176 | 60 | 44 | 22130 | –6506 |
|
| | | 460 | 327 | 345 | 5506 | –23130 |
|
| ? | 637 | 186 | 35 | 62 | 4558 | –3178 |
pg(6,30,2)? |
| | | 450 | 325 | 300 | 3078 | –5558 |
|
| ? | 637 | 252 | 91 | 105 | 7468 | –21168 |
pg(12,20,5)? |
| | | 384 | 236 | 224 | 20168 | –8468 |
|
| - | 637 | 270 | 147 | 90 | 6026 | –3610 |
Absolute bound |
| | | 366 | 185 | 244 | 2610 | –6126 |
Absolute bound |
| ? | 637 | 318 | 158 | 159 | 12.119318 | –13.119318 |
2-graph\*? |
| ? | 638 | 49 | 0 | 4 | 5406 | –9231 |
|
| | | 588 | 542 | 540 | 8231 | –6406 |
|
| + | 638 | 112 | 36 | 16 | 2487 | –4550 |
S(2,4,88) |
| | | 525 | 428 | 450 | 3550 | –2587 |
pg(21,24,18)? |
| ? | 638 | 189 | 60 | 54 | 15231 | –9406 |
pg(21,8,6)? |
| | | 448 | 312 | 320 | 8406 | –16231 |
|
| ? | 638 | 273 | 112 | 120 | 9406 | –17231 |
|
| | | 364 | 210 | 204 | 16231 | –10406 |
|
| ? | 639 | 288 | 112 | 144 | 4567 | –3671 |
pg(8,35,4)?; 2-graph\*? |
| | | 350 | 205 | 175 | 3571 | –5567 |
2-graph\*? |
| + | 640 | 71 | 6 | 8 | 7355 | –9284 |
Haemers(8); Muzychuk S6 (n=8,d=2) |
| | | 568 | 504 | 504 | 8284 | –8355 |
|
| + | 640 | 72 | 8 | 8 | 8315 | –8324 |
Wallis (AR(8,1)+S(2,2,10)); GQ(9,7) |
| | | 567 | 502 | 504 | 7324 | –9315 |
|
| ? | 640 | 153 | 44 | 34 | 17180 | –7459 |
|
| | | 486 | 366 | 378 | 6459 | –18180 |
|
| ? | 640 | 198 | 50 | 66 | 6495 | –22144 |
pg(9,21,3)? |
| | | 441 | 308 | 294 | 21144 | –7495 |
|
| ? | 640 | 210 | 66 | 70 | 10364 | –14275 |
pg(15,13,5)? |
| | | 429 | 288 | 286 | 13275 | –11364 |
|
| ? | 640 | 213 | 72 | 70 | 13284 | –11355 |
|
| | | 426 | 282 | 286 | 10355 | –14284 |
|
| ? | 640 | 243 | 66 | 108 | 3594 | –4545 |
q222=0 |
| | | 396 | 260 | 220 | 4445 | –4594 |
q111=0 |
| ? | 640 | 284 | 108 | 140 | 4568 | –3671 |
2-graph? |
| | | 355 | 210 | 180 | 3571 | –5568 |
2-graph? |
| ? | 640 | 315 | 170 | 140 | 3572 | –5567 |
2-graph? |
| | | 324 | 148 | 180 | 4567 | –3672 |
pg(9,35,5)?; 2-graph? |
| + | 641 | 320 | 159 | 160 | 12.159320 | –13.159320 |
Paley(641); 2-graph\* |
| ? | 645 | 140 | 31 | 30 | 11300 | –10344 |
pg(14,9,3)? |
| | | 504 | 393 | 396 | 9344 | –12300 |
|
| ? | 645 | 160 | 38 | 40 | 10344 | –12300 |
|
| | | 484 | 363 | 363 | 11300 | –11344 |
|
| ? | 645 | 184 | 53 | 52 | 12300 | –11344 |
|
| | | 460 | 327 | 330 | 10344 | –13300 |
|
| ? | 645 | 210 | 85 | 60 | 3086 | –5558 |
|
| | | 434 | 283 | 310 | 4558 | –3186 |
pg(14,30,10)? |
| - | 645 | 322 | 160 | 161 | 12.198322 | –13.198322 |
Conf |
| ? | 646 | 245 | 84 | 98 | 7475 | –21170 |
|
| | | 400 | 252 | 240 | 20170 | –8475 |
|
| ? | 649 | 72 | 15 | 7 | 13176 | –5472 |
|
| | | 576 | 510 | 520 | 4472 | –14176 |
|
| ? | 649 | 216 | 63 | 76 | 7472 | –20176 |
|
| | | 432 | 291 | 280 | 19176 | –8472 |
|
| ? | 649 | 256 | 108 | 96 | 20176 | –8472 |
|
| | | 392 | 231 | 245 | 7472 | –21176 |
|
| - | 649 | 324 | 161 | 162 | 12.238324 | –13.238324 |
Conf |
| ? | 650 | 55 | 0 | 5 | 5429 | –10220 |
|
| | | 594 | 543 | 540 | 9220 | –6429 |
|
| ? | 650 | 121 | 24 | 22 | 11286 | –9363 |
|
| | | 528 | 428 | 432 | 8363 | –12286 |
|
| - | 650 | 177 | 8 | 63 | 2624 | –5725 |
Krein2; Absolute bound |
| | | 472 | 357 | 304 | 5625 | –3624 |
Krein1; Absolute bound |
| ? | 650 | 253 | 108 | 92 | 23143 | –7506 |
|
| | | 396 | 234 | 252 | 6506 | –24143 |
|
| - | 650 | 297 | 168 | 108 | 6325 | –3624 |
Absolute bound |
| | | 352 | 162 | 224 | 2624 | –6425 |
Absolute bound |