| | v | k | λ | μ |
rf | sg | comments |
| - | 501 | 250 | 124 | 125 | 10.692250 | –11.692250 |
Conf |
| ? | 505 | 84 | 3 | 16 | 4404 | –17100 |
|
| | | 420 | 351 | 340 | 16100 | –5404 |
|
| + | 505 | 120 | 39 | 25 | 19100 | –5404 |
S(2,5,101) |
| | | 384 | 288 | 304 | 4404 | –20100 |
|
| ? | 505 | 180 | 53 | 70 | 5404 | –22100 |
|
| | | 324 | 213 | 198 | 21100 | –6404 |
|
| ? | 505 | 224 | 108 | 92 | 22100 | –6404 |
|
| | | 280 | 147 | 165 | 5404 | –23100 |
|
| ? | 505 | 252 | 125 | 126 | 10.736252 | –11.736252 |
2-graph\*? |
| ? | 506 | 100 | 18 | 20 | 8275 | –10230 |
pg(10,9,2)? |
| | | 405 | 324 | 324 | 9230 | –9275 |
|
| ? | 507 | 44 | 1 | 4 | 5308 | –8198 |
|
| | | 462 | 421 | 420 | 7198 | –6308 |
|
| ? | 507 | 46 | 5 | 4 | 7230 | –6276 |
|
| | | 460 | 417 | 420 | 5276 | –8230 |
|
| ? | 507 | 138 | 49 | 33 | 2192 | –5414 |
|
| | | 368 | 262 | 280 | 4414 | –2292 |
|
| ? | 507 | 154 | 41 | 49 | 7338 | –15168 |
|
| | | 352 | 246 | 240 | 14168 | –8338 |
|
| ? | 507 | 176 | 70 | 56 | 20110 | –6396 |
|
| | | 330 | 209 | 225 | 5396 | –21110 |
|
| - | 507 | 184 | 36 | 84 | 2483 | –5023 |
Krein2; Absolute bound |
| | | 322 | 221 | 175 | 4923 | –3483 |
Krein1; Absolute bound |
| ? | 507 | 184 | 71 | 64 | 15168 | –8338 |
S(2,8,169)? |
| | | 322 | 201 | 210 | 7338 | –16168 |
|
| ? | 507 | 198 | 57 | 90 | 3462 | –3644 |
|
| | | 308 | 199 | 168 | 3544 | –4462 |
|
| ? | 507 | 230 | 121 | 90 | 3546 | –4460 |
|
| | | 276 | 135 | 168 | 3460 | –3646 |
|
| ? | 507 | 240 | 106 | 120 | 6380 | –20126 |
pg(12,19,6)?; 2-graph\*? |
| | | 266 | 145 | 133 | 19126 | –7380 |
2-graph\*? |
| ? | 508 | 234 | 100 | 114 | 6381 | –20126 |
2-graph? |
| | | 273 | 152 | 140 | 19126 | –7381 |
2-graph? |
| ? | 508 | 247 | 126 | 114 | 19127 | –7380 |
2-graph? |
| | | 260 | 126 | 140 | 6380 | –20127 |
2-graph? |
| + | 509 | 254 | 126 | 127 | 10.781254 | –11.781254 |
Paley(509); 2-graph\* |
| ? | 511 | 68 | 15 | 8 | 12146 | –5364 |
|
| | | 442 | 381 | 390 | 4364 | –13146 |
|
| ? | 511 | 78 | 5 | 13 | 5364 | –13146 |
|
| | | 432 | 366 | 360 | 12146 | –6364 |
|
| + | 512 | 70 | 6 | 10 | 6315 | –10196 |
GQ(7,9); from a hyperoval: projective 8-ary [10,3] code with weights 8, 10 |
| | | 441 | 380 | 378 | 9196 | –7315 |
|
| + | 512 | 73 | 12 | 10 | 9219 | –7292 |
Fiedler-Klin; Kohnert: projective binary [73,9] code with weights 32, 40 |
| | | 438 | 374 | 378 | 6292 | –10219 |
|
| - | 512 | 126 | 70 | 18 | 5416 | –2495 |
Absolute bound |
| | | 385 | 276 | 330 | 1495 | –5516 |
Absolute bound |
| + | 512 | 133 | 24 | 38 | 5399 | –19112 |
Godsil(q=8,r=3); pg(7,18,2)? |
| | | 378 | 282 | 270 | 18112 | –6399 |
|
| - | 512 | 189 | 96 | 54 | 4528 | –3483 |
Absolute bound |
| | | 322 | 186 | 230 | 2483 | –4628 |
Absolute bound |
| + | 512 | 196 | 60 | 84 | 4441 | –2870 |
pg(7,27,3); projective 8-ary [28,3] code with weights 24, 28 |
| | | 315 | 202 | 180 | 2770 | –5441 |
|
| + | 512 | 219 | 106 | 84 | 2773 | –5438 |
Fiedler-Klin; projective binary [219,9] code with weights 96, 112 |
| | | 292 | 156 | 180 | 4438 | –2873 |
|
| ? | 513 | 120 | 21 | 30 | 6360 | –15152 |
pg(8,14,2)? |
| | | 392 | 301 | 294 | 14152 | –7360 |
|
| - | 513 | 256 | 127 | 128 | 10.825256 | –11.825256 |
Conf |
| - | 517 | 258 | 128 | 129 | 10.869258 | –11.869258 |
Conf |
| ? | 518 | 132 | 26 | 36 | 6370 | –16147 |
|
| | | 385 | 288 | 280 | 15147 | –7370 |
|
| + | 521 | 260 | 129 | 130 | 10.913260 | –11.913260 |
Paley(521); 2-graph\* |
| - | 525 | 108 | 3 | 27 | 3468 | –2756 |
Krein2 |
| | | 416 | 334 | 312 | 2656 | –4468 |
Krein1 |
| ? | 525 | 128 | 28 | 32 | 8308 | –12216 |
|
| | | 396 | 299 | 297 | 11216 | –9308 |
|
| + | 525 | 144 | 48 | 36 | 18125 | –6399 |
S(2,6,126); NU(3,5) |
| | | 380 | 271 | 285 | 5399 | –19125 |
pg(20,18,15)? |
| - | 525 | 262 | 130 | 131 | 10.956262 | –11.956262 |
Conf |
| + | 527 | 256 | 120 | 128 | 8340 | –16186 |
pg(16,15,8)?; 2-graph\* |
| | | 270 | 141 | 135 | 15186 | –9340 |
O+(10,2); from ETF Fickus et al.; 2-graph\* |
| ! | 528 | 62 | 31 | 4 | 2932 | –2495 |
Triangular graph T(33) |
| | | 465 | 406 | 435 | 1495 | –3032 |
|
| ? | 528 | 102 | 26 | 18 | 14153 | –6374 |
pg(17,5,3)? |
| | | 425 | 340 | 350 | 5374 | –15153 |
|
| ? | 528 | 186 | 64 | 66 | 10279 | –12248 |
|
| | | 341 | 220 | 220 | 11248 | –11279 |
|
| ? | 528 | 187 | 66 | 66 | 11255 | –11272 |
|
| | | 340 | 218 | 220 | 10272 | –12255 |
|
| + | 528 | 248 | 112 | 120 | 8341 | –16186 |
Jasper; 2-graph |
| | | 279 | 150 | 144 | 15186 | –9341 |
2-graph |
| + | 528 | 255 | 126 | 120 | 15187 | –9340 |
NO–(10,2); Muzychuk S2 (r=4); 2-graph |
| | | 272 | 136 | 144 | 8340 | –16187 |
2-graph |
| ! | 529 | 44 | 21 | 2 | 2144 | –2484 |
232 |
| | | 484 | 441 | 462 | 1484 | –2244 |
OA(23,22) |
| + | 529 | 66 | 23 | 6 | 2066 | –3462 |
OA(23,3) |
| | | 462 | 401 | 420 | 2462 | –2166 |
OA(23,21) |
| + | 529 | 88 | 27 | 12 | 1988 | –4440 |
OA(23,4) |
| | | 440 | 363 | 380 | 3440 | –2088 |
OA(23,20) |
| ? | 529 | 96 | 5 | 20 | 4432 | –1996 |
|
| | | 432 | 355 | 342 | 1896 | –5432 |
|
| + | 529 | 110 | 33 | 20 | 18110 | –5418 |
OA(23,5) |
| | | 418 | 327 | 342 | 4418 | –19110 |
OA(23,19) |
| ? | 529 | 120 | 17 | 30 | 5408 | –18120 |
|
| | | 408 | 317 | 306 | 17120 | –6408 |
|
| + | 529 | 132 | 41 | 30 | 17132 | –6396 |
OA(23,6) |
| | | 396 | 293 | 306 | 5396 | –18132 |
OA(23,18) |
| ? | 529 | 144 | 31 | 42 | 6384 | –17144 |
|
| | | 384 | 281 | 272 | 16144 | –7384 |
|
| + | 529 | 154 | 51 | 42 | 16154 | –7374 |
OA(23,7) |
| | | 374 | 261 | 272 | 6374 | –17154 |
OA(23,17) |
| ? | 529 | 168 | 47 | 56 | 7360 | –16168 |
|
| | | 360 | 247 | 240 | 15168 | –8360 |
|
| + | 529 | 176 | 63 | 56 | 15176 | –8352 |
OA(23,8); vanLint-Schrijver(1) |
| | | 352 | 231 | 240 | 7352 | –16176 |
OA(23,16); vanLint-Schrijver(2) |
| ? | 529 | 192 | 65 | 72 | 8336 | –15192 |
|
| | | 336 | 215 | 210 | 14192 | –9336 |
|
| + | 529 | 198 | 77 | 72 | 14198 | –9330 |
OA(23,9) |
| | | 330 | 203 | 210 | 8330 | –15198 |
OA(23,15) |
| - | 529 | 208 | 27 | 117 | 1520 | –918 |
Krein2; Absolute bound |
| | | 320 | 228 | 140 | 908 | –2520 |
Krein1; Absolute bound |
| ? | 529 | 216 | 85 | 90 | 9312 | –14216 |
|
| | | 312 | 185 | 182 | 13216 | –10312 |
|
| + | 529 | 220 | 93 | 90 | 13220 | –10308 |
OA(23,10) |
| | | 308 | 177 | 182 | 9308 | –14220 |
OA(23,14) |
| ? | 529 | 240 | 107 | 110 | 10288 | –13240 |
|
| | | 288 | 157 | 156 | 12240 | –11288 |
|
| + | 529 | 242 | 111 | 110 | 12242 | –11286 |
OA(23,11); Pasechnik(23) |
| | | 286 | 153 | 156 | 10286 | –13242 |
OA(23,13) |
| + | 529 | 264 | 131 | 132 | 11264 | –12264 |
Paley(529); OA(23,12); 2-graph\* |
| + | 530 | 253 | 120 | 121 | 11265 | –12264 |
switch OA(23,12)+*; switch skewhad2+*; 2-graph |
| | | 276 | 143 | 144 | 11264 | –12265 |
S(2,12,265)?; 2-graph |
| + | 532 | 81 | 30 | 9 | 2456 | –3475 |
S(2,3,57) |
| | | 450 | 377 | 400 | 2475 | –2556 |
pg(18,24,16)? |
| ? | 532 | 126 | 35 | 28 | 14171 | –7360 |
pg(18,6,4)? |
| | | 405 | 306 | 315 | 6360 | –15171 |
|
| ? | 532 | 156 | 30 | 52 | 4455 | –2676 |
pg(6,25,2)? |
| | | 375 | 270 | 250 | 2576 | –5455 |
|
| ? | 532 | 243 | 114 | 108 | 15189 | –9342 |
|
| | | 288 | 152 | 160 | 8342 | –16189 |
pg(18,15,10)? |
| ? | 533 | 114 | 25 | 24 | 10246 | –9286 |
|
| | | 418 | 327 | 330 | 8286 | –11246 |
|
| ? | 533 | 132 | 31 | 33 | 9286 | –11246 |
pg(12,10,3)? |
| | | 400 | 300 | 300 | 10246 | –10286 |
|
| ? | 533 | 154 | 45 | 44 | 11246 | –10286 |
|
| | | 378 | 267 | 270 | 9286 | –12246 |
|
| ? | 533 | 266 | 132 | 133 | 11.043266 | –12.043266 |
2-graph\*? |
| ? | 536 | 130 | 48 | 26 | 2667 | –4468 |
|
| | | 405 | 300 | 324 | 3468 | –2767 |
|
| - | 537 | 268 | 133 | 134 | 11.087268 | –12.087268 |
Conf |
| ? | 539 | 234 | 81 | 117 | 3494 | –3944 |
pg(6,38,3)?; 2-graph\*? |
| | | 304 | 186 | 152 | 3844 | –4494 |
2-graph\*? |
| + | 539 | 250 | 105 | 125 | 5440 | –2598 |
pg(10,24,5)?; 2-graph\* |
| | | 288 | 162 | 144 | 2498 | –6440 |
2-graph\* |
| ? | 540 | 49 | 8 | 4 | 9189 | –5350 |
|
| | | 490 | 444 | 450 | 4350 | –10189 |
|
| ? | 540 | 55 | 10 | 5 | 10176 | –5363 |
|
| | | 484 | 433 | 440 | 4363 | –11176 |
|
| ? | 540 | 77 | 4 | 12 | 5385 | –13154 |
|
| | | 462 | 396 | 390 | 12154 | –6385 |
|
| ? | 540 | 77 | 22 | 9 | 1799 | –4440 |
|
| | | 462 | 393 | 408 | 3440 | –1899 |
|
| ? | 540 | 84 | 18 | 12 | 12175 | –6364 |
pg(14,5,2)? |
| | | 455 | 382 | 390 | 5364 | –13175 |
|
| ? | 540 | 98 | 16 | 18 | 8294 | –10245 |
|
| | | 441 | 360 | 360 | 9245 | –9294 |
|
| ? | 540 | 99 | 18 | 18 | 9264 | –9275 |
pg(11,8,2)? |
| | | 440 | 358 | 360 | 8275 | –10264 |
|
| - | 540 | 147 | 18 | 48 | 3490 | –3349 |
Krein2 |
| | | 392 | 292 | 264 | 3249 | –4490 |
Krein1 |
| ? | 540 | 147 | 42 | 39 | 12224 | –9315 |
|
| | | 392 | 283 | 288 | 8315 | –13224 |
|
| ? | 540 | 147 | 66 | 30 | 3935 | –3504 |
|
| | | 392 | 274 | 312 | 2504 | –4035 |
|
| ? | 540 | 154 | 28 | 50 | 4462 | –2677 |
|
| | | 385 | 280 | 260 | 2577 | –5462 |
|
| ? | 540 | 154 | 43 | 44 | 10275 | –11264 |
pg(14,10,4)? |
| | | 385 | 274 | 275 | 10264 | –11275 |
|
| ? | 540 | 154 | 48 | 42 | 14189 | –8350 |
|
| | | 385 | 272 | 280 | 7350 | –15189 |
|
| - | 540 | 154 | 88 | 26 | 6414 | –2525 |
Absolute bound |
| | | 385 | 256 | 320 | 1525 | –6514 |
Absolute bound |
| ? | 540 | 175 | 70 | 50 | 2584 | –5455 |
|
| | | 364 | 238 | 260 | 4455 | –2684 |
pg(14,25,10)? |
| ? | 540 | 176 | 76 | 48 | 3255 | –4484 |
|
| | | 363 | 234 | 264 | 3484 | –3355 |
pg(11,32,8)? |
| + | 540 | 187 | 58 | 68 | 7374 | –17165 |
O−(6,2) Crnkovic_et_al; pg(11,16,4)? |
| | | 352 | 232 | 224 | 16165 | –8374 |
|
| ? | 540 | 220 | 103 | 80 | 2875 | –5464 |
|
| | | 319 | 178 | 203 | 4464 | –2975 |
pg(11,28,7)? |
| + | 540 | 224 | 88 | 96 | 8350 | –16189 |
NU(4,3); pg(14,15,6)? |
| | | 315 | 186 | 180 | 15189 | –9350 |
|
| ? | 540 | 231 | 78 | 114 | 3495 | –3944 |
2-graph? |
| | | 308 | 190 | 156 | 3844 | –4495 |
2-graph? |
| + | 540 | 245 | 100 | 120 | 5441 | –2598 |
2-graph |
| | | 294 | 168 | 150 | 2498 | –6441 |
from 2-(45,5,1) with 1-factor Fickus et al.; 2-graph |
| + | 540 | 264 | 138 | 120 | 2499 | –6440 |
Wallis (AR(2,3)+S(2,5,45)); 2-graph |
| | | 275 | 130 | 150 | 5440 | –2599 |
Goethals-Seidel(5,11); pg(11,24,6)?; 2-graph |
| ? | 540 | 266 | 148 | 114 | 3845 | –4494 |
2-graph? |
| | | 273 | 120 | 156 | 3494 | –3945 |
2-graph? |
| + | 541 | 270 | 134 | 135 | 11.130270 | –12.130270 |
Paley(541); 2-graph\* |
| ? | 544 | 180 | 58 | 60 | 10288 | –12255 |
pg(15,11,5)? |
| | | 363 | 242 | 242 | 11255 | –11288 |
|
| ? | 545 | 272 | 135 | 136 | 11.173272 | –12.173272 |
2-graph\*? |
| + | 546 | 125 | 40 | 25 | 20104 | –5441 |
S(2,5,105) |
| | | 420 | 319 | 336 | 4441 | –21104 |
pg(20,20,16)? |
| ? | 546 | 225 | 96 | 90 | 15195 | –9350 |
|
| | | 320 | 184 | 192 | 8350 | –16195 |
pg(20,15,12)? |
| ? | 549 | 274 | 136 | 137 | 11.215274 | –12.215274 |
2-graph\*? |
| ? | 550 | 63 | 8 | 7 | 8252 | –7297 |
|
| | | 486 | 429 | 432 | 6297 | –9252 |
|
| ? | 550 | 117 | 20 | 26 | 7351 | –13198 |
pg(9,12,2)? |
| | | 432 | 340 | 336 | 12198 | –8351 |
|
| ? | 550 | 162 | 75 | 36 | 4233 | –3516 |
|
| | | 387 | 260 | 301 | 2516 | –4333 |
pg(9,42,7)? |
| ? | 550 | 192 | 72 | 64 | 16175 | –8374 |
S(2,8,176)? |
| | | 357 | 228 | 238 | 7374 | –17175 |
pg(21,16,14)? |
| ? | 550 | 225 | 80 | 100 | 5450 | –2599 |
pg(9,24,4)? |
| | | 324 | 198 | 180 | 2499 | –6450 |
|