The structure here is richer: not only a (0,2)-graph, but also a grading.
di(a1 ∧ ... ∧ ai) = Σj Σaj=b+c (–1)j f(b,c) a1 ∧ ... ∧ aj–1 ∧ b ∧ c ∧ aj+1 ∧ ... ∧ ai,where f(b,c)=–f(c,b) and the sum is over unordered pairs of positive roots {b,c} with b+c = aj. One checks that indeed di+1di = 0 provided that f(b,c)f(b+c,d) = f(b,c+d)f(c,d). (For a simply laced root system one can find such an f that only takes the values 1 or –1, e.g. by borrowing it from the corresponding Lie algebra: [er,es] = f(r,s)er+s.)
This complex is the direct sum of such complexes where the basis vectors are restricted to (the exterior products of the elements of) the vertices of Γ(u). For each u we can ask for the cohomology of this complex.
In characteristic 0 the only contribution to cohomology is provided by the Γ(u) that have a single vertex only. In characteristic p there may be further cohomology.
For example, Hp has further mod p cohomology in Ap+1. Look at the sum vector u = (1,2,3,...,p,1). The corresponding graph has 2p vertices and valency p, that is, is the p-cube. The matrix for dp has rank p but p-rank p-1, so that Hp has larger dimension in characteristic p than in characteristic 0.
In characteristic 0, the Poincaré polynomial P(t) = Σ dim Hi ti equals ∏d ((td-1)/(t-1)) where d runs over the degrees: that is the sequence 2,3,...,n+1 for An and 2,4,6,...,2n-4,2n-2,n for Dn. This explains the p=0 data below.
Data: An, Bn, Cn, Dn, F4. G2. See also On Kostant's theorem for Lie algebra cohomology, by the University of Georgia VIGRE algebra group (preprint, 2007).
p | H0 | |
0 | 1 |
A1:
p | H0 | H1 | |
0 | 1 | 1 |
A2:
p | H0 | H1 | H2 | H3 | |
0 | 1 | 2 | 2 | 1 |
A3:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | |
0 | 1 | 3 | 5 | 6 | 5 | 3 | 1 | |
2 | 1 | 3 | 6 | 8 | 6 | 3 | 1 |
A4:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | |
0 | 1 | 4 | 9 | 15 | 20 | 22 | 20 | 15 | 9 | 4 | 1 | |
2 | 1 | 4 | 11 | 25 | 38 | 42 | 38 | 25 | 11 | 4 | 1 | |
3 | 1 | 4 | 9 | 17 | 25 | 28 | 25 | 17 | 9 | 4 | 1 |
A5:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7, H8 | ... | H15 | |
0 | 1 | 5 | 14 | 29 | 49 | 71 | 90 | 101 | ... | 1 | |
2 | 1 | 5 | 17 | 52 | 119 | 209 | 308 | 381 | ... | 1 | |
3 | 1 | 5 | 14 | 33 | 66 | 110 | 151 | 172 | ... | 1 |
A6:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10, H11 | ... | H21 | |
0 | 1 | 6 | 20 | 49 | 98 | 169 | 259 | 359 | 455 | 531 | 573 | ... | 1 | |
2 | 1 | 6 | 24 | 88 | 263 | 630 | 1290 | 2293 | 3523 | 4657 | 5313 | ... | 1 | |
3 | 1 | 6 | 20 | 55 | 131 | 274 | 505 | 802 | 1114 | 1396 | 1576 | ... | 1 | |
5 | 1 | 6 | 20 | 49 | 98 | 173 | 280 | 414 | 549 | 650 | 700 | ... | 1 |
A7:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | H12 | H13 | H14 | H15 | ... | H28 | |
0 | 1 | 7 | 27 | 76 | 174 | 343 | 602 | 961 | 1415 | 1940 | 2493 | 3017 | 3450 | 3736 | 3836 | 3736 | ... | 1 | |
2 | 1 | 7 | 32 | 134 | 479 | 1433 | 3732 | 8543 | 17384 | 31600 | 51128 | 73885 | 96110 | 112822 | 119116 | 112822 | ... | 1 | |
3 | 1 | 7 | 27 | 84 | 227 | 556 | 1249 | 2490 | 4392 | 7045 | 10452 | 14302 | 17856 | 20252 | 21064 | 20252 | ... | 1 | |
5 | 1 | 7 | 27 | 76 | 174 | 351 | 657 | 1153 | 1869 | 2773 | 3783 | 4790 | 5676 | 6306 | 6538 | 6306 | ... | 1 |
p | H0 | H1 | H2 | H3 | H4 | |
0 | 1 | 2 | 2 | 2 | 1 | |
2 | 1 | 3 | 4 | 3 | 1 |
B3:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | |
0 | 1 | 3 | 5 | 7 | 8 | 8 | 7 | 5 | 3 | 1 | |
2 | 1 | 4 | 12 | 24 | 33 | 33 | 24 | 12 | 4 | 1 | |
3 | 1 | 3 | 6 | 10 | 12 | 12 | 10 | 6 | 3 | 1 |
B4:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | ... | H16 | |
0 | 1 | 4 | 9 | 16 | 24 | 32 | 39 | 44 | 46 | 44 | ... | 1 | |
2 | 1 | 5 | 22 | 70 | 168 | 336 | 555 | 732 | 794 | 732 | ... | 1 | |
3 | 1 | 4 | 10 | 23 | 44 | 74 | 114 | 147 | 158 | 147 | ... | 1 | |
5 | 1 | 4 | 9 | 17 | 29 | 44 | 57 | 63 | 64 | 63 | ... | 1 |
B5:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | H12, H13 | ... | H25 | |
0 | 1 | 5 | 14 | 30 | 54 | 86 | 125 | 169 | 215 | 259 | 297 | 325 | 340 | ... | 1 | |
2 | 1 | 6 | 30 | 129 | 430 | 1225 | 3082 | 6624 | 12219 | 19945 | 28994 | 37050 | 41621 | ... | 1 | |
3 | 1 | 5 | 15 | 40 | 94 | 208 | 430 | 790 | 1320 | 1993 | 2639 | 3136 | 3441 | ... | 1 | |
5 | 1 | 5 | 14 | 31 | 61 | 113 | 197 | 312 | 443 | 574 | 694 | 798 | 869 | ... | 1 | |
7 | 1 | 5 | 14 | 30 | 55 | 92 | 144 | 212 | 291 | 367 | 424 | 456 | 469 | ... | 1 |
C3:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | |
0 | 1 | 3 | 5 | 7 | 8 | 8 | 7 | 5 | 3 | 1 | |
2 | 1 | 5 | 13 | 24 | 33 | 33 | 24 | 13 | 5 | 1 | |
3 | 1 | 3 | 6 | 10 | 12 | 12 | 10 | 6 | 3 | 1 |
C4:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | ... | H16 | |
0 | 1 | 4 | 9 | 16 | 24 | 32 | 39 | 44 | 46 | 44 | ... | 1 | |
2 | 1 | 7 | 27 | 79 | 187 | 363 | 581 | 767 | 840 | 767 | ... | 1 | |
3 | 1 | 4 | 10 | 22 | 43 | 79 | 124 | 151 | 156 | 151 | ... | 1 | |
5 | 1 | 4 | 9 | 16 | 26 | 41 | 57 | 67 | 70 | 67 | ... | 1 |
C5:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | H12, H13 | ... | H25 | |
0 | 1 | 5 | 14 | 30 | 54 | 86 | 125 | 169 | 215 | 259 | 297 | 325 | 340 | ... | 1 | |
2 | 1 | 9 | 45 | 174 | 562 | 1544 | 3691 | 7728 | 14158 | 22776 | 32374 | 40853 | 45873 | ... | 1 | |
3 | 1 | 5 | 15 | 39 | 93 | 218 | 466 | 847 | 1372 | 2034 | 2708 | 3277 | 3645 | ... | 1 | |
5 | 1 | 5 | 14 | 30 | 59 | 114 | 203 | 319 | 448 | 581 | 704 | 790 | 828 | ... | 1 | |
7 | 1 | 5 | 14 | 30 | 54 | 86 | 128 | 188 | 272 | 367 | 443 | 481 | 491 | ... | 1 |
D4:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | H12 | |
0 | 1 | 4 | 9 | 16 | 23 | 28 | 30 | 28 | 23 | 16 | 9 | 4 | 1 | |
2 | 1 | 4 | 15 | 37 | 67 | 103 | 122 | 103 | 67 | 37 | 15 | 4 | 1 | |
3 | 1 | 4 | 9 | 17 | 28 | 39 | 44 | 39 | 28 | 17 | 9 | 4 | 1 |
D5:
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | ... | H20 | |
0 | 1 | 5 | 14 | 30 | 54 | 85 | 120 | 155 | 185 | 205 | 212 | 205 | ... | 1 | |
2 | 1 | 5 | 22 | 79 | 216 | 516 | 1072 | 1815 | 2586 | 3247 | 3530 | 3247 | ... | 1 | |
3 | 1 | 5 | 14 | 37 | 85 | 163 | 285 | 449 | 616 | 746 | 798 | 746 | ... | 1 | |
5 | 1 | 5 | 14 | 30 | 54 | 89 | 143 | 213 | 273 | 303 | 310 | 303 | ... | 1 |
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | H12 | H13 | ... | H24 | |
0 | 1 | 4 | 9 | 16 | 25 | 36 | 48 | 60 | 71 | 80 | 87 | 92 | 94 | 92 | ... | 1 | |
2 | 1 | 6 | 30 | 118 | 371 | 1008 | 2381 | 4791 | 8379 | 13074 | 18005 | 21600 | 22860 | 21600 | ... | 1 | |
3 | 1 | 4 | 12 | 37 | 90 | 189 | 369 | 654 | 1051 | 1526 | 1980 | 2311 | 2436 | 2311 | ... | 1 | |
5 | 1 | 4 | 9 | 17 | 31 | 53 | 82 | 127 | 197 | 277 | 340 | 368 | 372 | 368 | ... | 1 | |
7 | 1 | 4 | 9 | 16 | 25 | 38 | 60 | 94 | 133 | 163 | 173 | 165 | 158 | 165 | ... | 1 |
p | H0 | H1 | H2 | H3 | H4 | H5 | H6 | |
0 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | |
2 | 1 | 3 | 6 | 8 | 6 | 3 | 1 | |
3 | 1 | 3 | 6 | 8 | 6 | 3 | 1 |