Rectagraphs from root systems

One can construct (0,2)-graphs Γ(u) from root systems with simply laced diagram. This may or may not be relevant to computation of mod p cohomology.

The structure here is richer: not only a (0,2)-graph, but also a grading.

Cohomology of root systems

Let Φ be a root system, let k be any field, and let Ci = ⋀i Φ+ be the i-th exterior power of the k-vectorspace with basis Φ+. Consider the cochain complex ... ← Ci+1 ← Ci ← ... with coboundary operator d defined by
di(a1 ∧ ... ∧ ai) = Σj Σaj=b+c (–1)j f(b,c) a1 ∧ ... ∧ aj–1bcaj+1 ∧ ... ∧ ai,
where f(b,c)=–f(c,b) and the sum is over unordered pairs of positive roots {b,c} with b+c = aj. One checks that indeed di+1di = 0 provided that f(b,c)f(b+c,d) = f(b,c+d)f(c,d). (For a simply laced root system one can find such an f that only takes the values 1 or –1, e.g. by borrowing it from the corresponding Lie algebra: [er,es] = f(r,s)er+s.)

This complex is the direct sum of such complexes where the basis vectors are restricted to (the exterior products of the elements of) the vertices of Γ(u). For each u we can ask for the cohomology of this complex.

In characteristic 0 the only contribution to cohomology is provided by the Γ(u) that have a single vertex only. In characteristic p there may be further cohomology.

For example, Hp has further mod p cohomology in Ap+1. Look at the sum vector u = (1,2,3,...,p,1). The corresponding graph has 2p vertices and valency p, that is, is the p-cube. The matrix for dp has rank p but p-rank p-1, so that Hp has larger dimension in characteristic p than in characteristic 0.

In characteristic 0, the Poincaré polynomial P(t) = Σ dim Hi ti equals ∏d ((td-1)/(t-1)) where d runs over the degrees: that is the sequence 2,3,...,n+1 for An and 2,4,6,...,2n-4,2n-2,n for Dn. This explains the p=0 data below.

Data: An, Bn, Cn, Dn, F4. G2. See also On Kostant's theorem for Lie algebra cohomology, by the University of Georgia VIGRE algebra group (preprint, 2007).

An

A0:
pH0
01

A1:
pH0H1
011

A2:
pH0H1 H2H3
01221

A3:
pH0H1 H2H3H4 H5H6
01356 531
21368 631

A4:
pH0H1 H2H3H4 H5H6H7 H8H9H10
014915 2022201594 1
2141125 38423825114 1
314917 2528251794 1

A5:
pH0H1 H2H3H4 H5H6 H7, H8...H15
0151429 497190101...1
2151752 119209308381...1
3151433 66110151172...1

A6:
pH0H1 H2H3H4 H5H6H7 H8H9 H10, H11...H21
0162049 98169259359455531 573...1
2162488 2636301290229335234657 5313...1
3162055 13127450580211141396 1576...1
5162049 98173280414549650 700...1

A7:
pH0H1 H2H3H4 H5H6H7 H8H9H10 H11H12H13 H14H15... H28
0172776 17434360296114151940 24933017345037363836 3736...1
21732134 4791433373285431738431600 511287388596110112822119116 112822...1
3172784 2275561249249043927045 1045214302178562025221064 20252...1
5172776 174351657115318692773 37834790567663066538 6306...1

Bn

B2:
pH0H1 H2H3H4
012221
213431

B3:
pH0H1 H2H3H4 H5H6H7 H8H9
013578 87531
214122433 33241241
31361012 1210631

B4:
pH0H1 H2H3H4 H5H6H7 H8H9... H16
01491624 3239444644...1
2152270168 336555732794732... 1
314102344 74114147158147... 1
51491729 4457636463...1

B5:
pH0H1 H2H3H4 H5H6H7 H8H9H10 H11H12, H13 ...H25
015143054 86125169215259297 325340...1
21630129430 1225308266241221919945 289943705041621...1
315154094 208430790132019932639 31363441...1
515143161 113197312443574694 798869...1
715143055 92144212291367424 456469...1

Cn

C2 = B2.

C3:
pH0H1 H2H3H4 H5H6H7 H8H9
013578 87531
215132433 33241351
31361012 1210631

C4:
pH0H1 H2H3H4 H5H6H7 H8H9...H16
01491624 3239444644...1
2172779187 363581767840767... 1
314102243 79124151156151... 1
51491626 4157677067...1

C5:
pH0H1 H2H3H4 H5H6H7 H8H9H10 H11H12, H13 ...H25
015143054 86125169215259297 325340...1
21945174 56215443691772814158 22776323744085345873 ...1
315153993 218466847137220342708 32773645...1
515143059 114203319448581704 790828...1
715143054 86128188272367443 481491...1

Dn

D3 = A3.

D4:
pH0H1 H2H3H4 H5H6H7 H8H9H10 H11H12
014916 232830282316 941
2141537 671031221036737 1541
314917 283944392817 941

D5:
pH0H1 H2H3H4 H5H6H7 H8H9H10 H11...H20
0151430 5485120155185205 212205...1
2152279 2165161072181525863247 35303247...1
3151437 85163285449616746 798746...1
5151430 5489143213273303 310303...1

F4

F4:
pH0H1 H2H3H4 H5H6H7 H8H9H10 H11H12H13 ...H24
014916 253648607180 87929492...1
21630118 3711008238147918379 1307418005216002286021600 ...1
3141237 9018936965410511526 1980231124362311...1
514917 315382127197277 340368372368...1
714916 25386094133163 173165158165...1

G2

G2:
pH0H1 H2H3H4 H5H6
01222 221
21368 631
31368 631