The number of semibiplanes of valency (block size) k at most 8 is
k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
N(k) | 1 | 1 | 1 | 1 | 2 | 4 | 13 | 40 | 104 |
These semibiplanes are given explicitly below.
A semibiplane can be regarded as a connected point-block incidence structure, where two points are in 0 or 2 blocks, and two blocks meet in 0 or 2 points. A biplane is the particular case where 0 does not occur. In other words, a biplane is a square 2-(w, k, 2) design, where w is the number of points. One has w = k(k-1)/2 + 1, that is, v = 2w = k2-k+2. The known cases have k = 1, 2, 3, 4, 5, 6, 9, 11, 13. See this survey by Gordon Royle, and a description of the three 2-(16,6,2) biplanes.
Of course all semibiplanes are rectagraphs. The number of nonbipartite rectagraphs of valency k at most 8 is
k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
N(k) | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 5 | 20 |
These 28 nonbipartite rectagraphs are the graphs N5.2, N6.6, N6.9, N7.44, N7.45, N7.51, N7.52, N7.53, N8.9, N8.37, N8.47, N8.107, N8.108, N8.112, N8.128, N8.131, N8.140, N8.155, N8.158, N8.170, N8.171, N8.178, N8.179, N8.180, N8.188, N8.193, N8.194, N8.195 below.
The total number of (0,2)-graphs of valency (block size) k at most 8 is
k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
N(k) | 1 | 1 | 1 | 2 | 3 | 8 | 24 | 96 | 302 |
These (0,2)-graphs are given explicitly below.
Let A be the adjacency matrix. For p=2 we see that any two distinct rows are orthogonal. It follows that A has full 2-rank when k is odd, and 2-rank at most v/2 when k is even. On the other hand, A+I has full 2-rank when k is even and 2-rank at most v/2 when k is odd. In the tables below we give the interesting 2-rank: that of A when k is even, of A+I otherwise. This value is at most v/2, and in 312 of the 438 cases we have equality. (There will be equality for example when k is odd and the graph is bipartite.)
For example, the three biplanes 2-(16,6,2) are distinguished by their 2-ranks 6, 7, 8 - for the incidence graphs this means that the 2-ranks are 12, 14, 16.
One can use 3-ranks, e.g. to distinguish the pairs 8.3-8.5, 8.4-8.6, 8.20-8.21:
8.3 | 8.5 | 8.4 | 8.6 | 8.20 | 8.21 | |
3-rk(A) | 66 | 66 | 60 | 64 | 80 | 78 |
3-rk(A+I) | 64 | 66 | 62 | 67 | 81 | 79 |
The extended bipartite double (ebipd) of a graph is the graph obtained from the bipartite double by adding the matching consisting of the edges joining two vertices with the same first coordinate. If the original graph is a rectagraph of valency k, the extended bipartite double is a bipartite (0,2)-graph with valency k+1.
The subgraphs column gives the type and number of the proper (0,2)-subgraphs of largest valency (at least 3), if any.
The 2-rank is that of the adjacency matrix A when k is even, and that of A+I when k is odd.
# | k | v | d | |G| | orbits | graph | subgraphs | 2-rk | spectrum |
0.1 | 0 | 1 | 0 | 1 | tra | 20 | 0 | 0 | |
1.1 | 1 | 2 | 1 | 2 | tra | 21 | 1 | 1, -1 | |
2.1 | 2 | 4 | 2 | 8 | tra | 22 | 2 | 2, 0, 0, -2 | |
3.1 | 3 | 8 | 3 | 48 | tra | 23 | 4 | 3, 1, 1, ... (integral) | |
4.1 | 4 | 14 | 3 | 336 | tra | 2-(7,4,2) biplane | 6 | 4, 1.414, 1.414, ... | |
4.2 | 4 | 16 | 4 | 384 | tra | 24 | 8 x 3.1 | 8 | 4, 2, 2, ... (integral) |
5.1 | 5 | 22 | 3 | 1320 | tra | 2-(11,5,2) biplane | 11 | 5, 1.732, 1.732, ... | |
5.2 | 5 | 24 | 4 | 480 | tra | bipd(icosahedron) | 12 | 5, 2.236, 2.236, ... | |
5.3 | 5 | 28 | 4 | 672 | tra | 4.1 x K2 | 2 x 4.1 | 14 | 5, 3, 2.414, ... |
5.4 | 5 | 32 | 5 | 3840 | tra | 25 | 10 x 4.2 | 16 | 5, 3, 3, ... (integral) |
6.1 | 6 | 32 | 3 | 1536 | tra | 2-(16,6,2) biplane | 6 x 4.2 | 14 | 6, 2, 2, ... (integral) |
6.2 | 6 | 32 | 3 | 768 | tra | 2-(16,6,2) biplane | 2 x 4.2 | 16 | 6, 2, 2, ... (integral) |
6.3 | 6 | 32 | 3 | 23040 | tra | folded 26 2-(16,6,2) biplane |
30 x 4.2 | 12 | 6, 2, 2, ... (integral) |
6.4 | 6 | 36 | 4 | 96 | 12+24 | 16 | 6, 2.828, 2.828, ... | ||
6.5 | 6 | 36 | 4 | 4320 | tra | drg(6,5,4,1; 1,2,5,6) | 14 | 6, 2.449, 2.449, ... | |
6.6 | 6 | 36 | 4 | 48 | 12+24 | 18 | 6, 2.828, 2.828, ... | ||
6.7 | 6 | 40 | 4 | 48 | 8+8+24 | 9 x 3.1 | 20 | 6, 3.020, 3.020, ... | |
6.8 | 6 | 40 | 4 | 120 | tra | 5 x 3.1 | 20 | 6, 3.236, 3.236, ... | |
6.9 | 6 | 44 | 4 | 2640 | tra | 5.1 x K2 | 2 x 5.1 | 22 | 6, 4, 2.732, ... |
6.10 | 6 | 48 | 5 | 256 | 16+32 | 8 x 4.1 | 24 | 6, 3.464, 3.464, ... | |
6.11 | 6 | 48 | 5 | 960 | tra | 5.2 x K2 | 2 x 5.2 | 24 | 6, 4, 3.236, ... |
6.12 | 6 | 56 | 5 | 2688 | tra | 5.3 x K2 | 4 x 5.3 | 28 | 6, 4, 4, ... |
6.13 | 6 | 64 | 6 | 46080 | tra | 26 | 12 x 5.4 | 32 | 6, 4, 4, ... (integral) |
7.1 | 7 | 48 | 4 | 384 | tra | 2 x 5.2 | 24 | 7, 3, 3, ... | |
7.2 | 7 | 48 | 4 | 1920 | tra | ebipd(N6.6) | 2 x 5.2 | 24 | 7, 3, 3, ... |
7.3 | 7 | 48 | 4 | 48 | tra | 66 x 3.1 | 24 | 7, 3, 2.977, ... | |
7.4 | 7 | 48 | 4 | 64 | 16+32 | 2 x 4.2 | 24 | 7, 3, 3, ... | |
7.5 | 7 | 48 | 4 | 64 | 16+32 | 2 x 4.2 | 24 | 7, 3, 3, ... | |
7.6 | 7 | 48 | 4 | 48 | tra | 96 x 3.1 | 24 | 7, 3, 3, ... | |
7.7 | 7 | 48 | 4 | 96 | tra | 60 x 3.1 | 24 | 7, 3, 3, ... | |
7.8 | 7 | 48 | 4 | 72 | 12+36 | 84 x 3.1 | 24 | 7, 3, 3, ... | |
7.9 | 7 | 48 | 4 | 96 | tra | 6 x 4.2 | 24 | 7, 3, 3, ... | |
7.10 | 7 | 48 | 4 | 2016 | tra | Π/σ | 84 x 3.1 | 24 | 7, 2.646, 2.646, ... |
7.11 | 7 | 56 | 4 | 16 | 2*4+2*8+2*16 | 1 x 3.1 | 28 | 7, 3.462, 3.352, ... | |
7.12 | 7 | 56 | 4 | 8 | 4*4+5*8 | 9 x 3.1 | 28 | 7, 3.582, 3.557, ... | |
7.13 | 7 | 56 | 4 | 16 | 2*4+2*8+2*16 | 9 x 3.1 | 28 | 7, 3.606, 3.606, ... | |
7.14 | 7 | 56 | 4 | 24 | 2+6+4*12 | 9 x 3.1 | 28 | 7, 3.462, 3.462, ... | |
7.15 | 7 | 56 | 4 | 8 | 4*4+5*8 | 5 x 3.1 | 28 | 7, 3.534, 3.518, ... | |
7.16 | 7 | 56 | 4 | 4 | 14*4 | 5 x 3.1 | 28 | 7, 3.549, 3.540, ... | |
7.17 | 7 | 56 | 4 | 16 | 3*8+2*16 | 4 x 3.1 | 28 | 7, 3.494, 3.494, ... | |
7.18 | 7 | 64 | 4 | 48 | 16+48 | 56 x 3.1 | 32 | 7, 3.711, 3.711, ... | |
7.19 | 7 | 64 | 4 | 120 | 24+40 | 35 x 3.1 | 32 | 7, 3.692, 3.692, ... | |
7.20 | 7 | 64 | 4 | 3072 | tra | 6.1 x K2 | 2 x 6.1 | 32 | 7, 5, 3, ... (integral) |
7.21 | 7 | 64 | 4 | 1536 | tra | 6.2 x K2 | 2 x 6.2 | 32 | 7, 5, 3, ... (integral) |
7.22 | 7 | 64 | 4 | 1152 | tra | 8 x 4.2 | 32 | 7, 3.606, 3.606, ... | |
7.23 | 7 | 64 | 4 | 46080 | tra | 6.3 x K2 | 2 x 6.3 | 32 | 7, 5, 3, ... (integral) |
7.24 | 7 | 64 | 5 | 12 | 4+5*12 | 2 x 4.1 | 32 | 7, 3.739, 3.684, ... | |
7.25 | 7 | 64 | 5 | 24 | 4+5*12 | 38 x 3.1 | 32 | 7, 3.988, 3.988, ... | |
7.26 | 7 | 64 | 5 | 8 | 8*4+4*8 | 33 x 3.1 | 32 | 7, 3.952, 3.904, ... | |
7.27 | 7 | 64 | 5 | 12 | 2*2+2*6+4*12 | 41 x 3.1 | 32 | 7, 3.828, 3.638, ... | |
7.28 | 7 | 64 | 5 | 336 | 8+56 | 56 x 3.1 | 32 | 7, 3.828, 3.828, ... | |
7.29 | 7 | 72 | 5 | 12096 | tra | U3(3).2/L2(7) | 36 x 4.1 | 36 | 7, 3.606, 3.606, ... |
7.30 | 7 | 72 | 5 | 192 | 24+48 | 6.4 x K2 | 2 x 6.4 | 36 | 7, 5, 3.828, ... |
7.31 | 7 | 72 | 5 | 8640 | tra | 6.5 x K2 | 2 x 6.5 | 36 | 7, 5, 3.449, ... |
7.32 | 7 | 72 | 5 | 96 | 24+48 | 6.6 x K2 | 2 x 6.6 | 36 | 7, 5, 3.828, ... |
7.33 | 7 | 80 | 5 | 48 | 8+24+48 | 1 x 5.2 | 40 | 7, 4.236, 4.017, ... | |
7.34 | 7 | 80 | 5 | 96 | 16+16+48 | 6.7 x K2 | 2 x 6.7 | 40 | 7, 5, 4.020, ... |
7.35 | 7 | 80 | 5 | 240 | tra | 6.8 x K2 | 2 x 6.8 | 40 | 7, 5, 4.236, ... |
7.36 | 7 | 88 | 5 | 10560 | tra | 6.9 x K2 | 4 x 6.9 | 44 | 7, 5, 5, ... |
7.37 | 7 | 96 | 6 | 512 | 32+64 | 6.10 x K2 | 2 x 6.10 | 48 | 7, 5, 4.464, ... |
7.38 | 7 | 96 | 6 | 3840 | tra | 6.11 x K2 | 4 x 6.11 | 48 | 7, 5, 5, ... |
7.39 | 7 | 112 | 6 | 16128 | tra | 6.12 x K2 | 6 x 6.12 | 56 | 7, 5, 5, ... |
7.40 | 7 | 128 | 7 | 645120 | tra | 27 | 14 x 6.13 | 64 | 7, 5, 5, ... (integral) |
8.1 | 8 | 64 | 4 | 384 | tra | 32 | 8, 3.464, 3.464, ... | ||
8.2 | 8 | 64 | 4 | 10752 | tra | drg(8,7,6,1; 1,2,7,8) Π/σ |
26 | 8, 2.828, 2.828, ... | |
8.3 | 8 | 68 | 4 | 4 | 17*4 | 118 x 3.1 | 32 | 8, 3.708, 3.611, ... | |
8.4 | 8 | 68 | 4 | 20 | 2*4+3*20 | 131 x 3.1 | 32 | 8, 3.689, 3.689, ... | |
8.5 | 8 | 68 | 4 | 4 | 17*4 | 103 x 3.1 | 32 | 8, 3.755, 3.618, ... | |
8.6 | 8 | 68 | 4 | 20 | 2*4+3*20 | 111 x 3.1 | 32 | 8, 3.742, 3.742, ... | |
8.7 | 8 | 72 | 4 | 144 | tra | 90 x 3.1 | 32 | 8, 4, 4, ... | |
8.8 | 8 | 74 | 5 | 672 | 2+16+56 | 126 x 3.1 | 28 | 8, 3.646, 3.646, ... | |
8.9 | 8 | 80 | 4 | 4 | 8*2+16*4 | 52 x 3.1 | 40 | 8, 4.255, 4.184, ... | |
8.10 | 8 | 80 | 4 | 20 | 4*20 | 40 x 3.1 | 40 | 8, 4.606, 4.218, ... | |
8.11 | 8 | 80 | 4 | 20 | 4*20 | 65 x 3.1 | 36 | 8, 4.512, 4.179, ... | |
8.12 | 8 | 80 | 4 | 384 | 32+48 | 32 x 3.1 | 36 | 8, 4, 4, ... | |
8.13 | 8 | 80 | 5 | 3840 | tra | 80 x 3.1 | 32 | 8, 4, 4, ... (integral) | |
8.14 | 8 | 80 | 5 | 12 | 2*4+6*12 | 12 x 3.1 | 40 | 8, 4.234, 4.149, ... | |
8.15 | 8 | 80 | 5 | 768 | 16+64 | 16 x 3.1 | 36 | 8, 4, 4, ... | |
8.16 | 8 | 84 | 4 | 16 | 4+6*8+2*16 | 16 x 3.1 | 40 | 8, 4.102, 3.907, ... | |
8.17 | 8 | 84 | 4 | 64 | 4+16+2*32 | 32 x 3.1 | 40 | 8, 4.337, 4.337, ... | |
8.18 | 8 | 84 | 4 | 32 | 4+2*8+2*16+32 | 16 x 3.1 | 40 | 8, 4.218, 4.218, ... | |
8.19 | 8 | 84 | 4 | 1344 | tra | 4.L3(2).2/D16 | 40 | 8, 3.742, 3.742, ... | |
8.20 | 8 | 84 | 5 | 8 | 7*4+7*8 | 32 x 3.1 | 40 | 8, 4.243, 4.243, ... | |
8.21 | 8 | 84 | 5 | 8 | 7*4+7*8 | 74 x 3.1 | 40 | 8, 4.321, 4.228, ... | |
8.22 | 8 | 84 | 5 | 4 | 14*2+14*4 | 64 x 3.1 | 40 | 8, 4.296, 4.286, ... | |
8.23 | 8 | 84 | 5 | 4 | 14*2+14*4 | 38 x 3.1 | 40 | 8, 4.197, 4.129, ... | |
8.24 | 8 | 84 | 5 | 16 | 4+6*8+2*16 | 40 x 3.1 | 40 | 8, 4.256, 4.218, ... | |
8.25 | 8 | 84 | 5 | 16 | 3*4+3*8+3*16 | 40 x 3.1 | 40 | 8, 4.337, 4.313, ... | |
8.26 | 8 | 84 | 5 | 64 | 4+16+2*32 | 72 x 3.1 | 40 | 8, 4.337, 4.337, ... | |
8.27 | 8 | 84 | 5 | 16 | 3*4+3*8+3*16 | 40 x 3.1 | 40 | 8, 4.337, 4.307, ... | |
8.28 | 8 | 84 | 5 | 64 | 4+16+2*32 | 24 x 3.1 | 40 | 8, 4.307, 4.307, ... | |
8.29 | 8 | 84 | 5 | 96 | 12+24+48 | 48 x 3.1 | 40 | 8, 4.218, 4.218, ... | |
8.30 | 8 | 88 | 4 | 160 | 8+40+40 | 5 x 4.2 | 40 | 8, 4.813, 4.813, ... | |
8.31 | 8 | 88 | 5 | 16 | 3*8+4*16 | 1 x 4.2 | 40 | 8, 4.812, 4.798, ... | |
8.32 | 8 | 88 | 5 | 32 | 3*8+2*32 | 1 x 4.2 | 40 | 8, 4.946, 4.606, ... | |
8.33 | 8 | 96 | 4 | 1152 | tra | 4 x 5.2 | 48 | 8, 4, 4, ... | |
8.34 | 8 | 96 | 5 | 5760 | tra | ebipd(N7.44) | 6 x 6.11 | 48 | 8, 5.236, 5.236, ... |
8.35 | 8 | 96 | 5 | 384 | 32+64 | 4 x 5.2 | 48 | 8, 5.236, 5.236, ... | |
8.36 | 8 | 96 | 5 | 24 | 2*12+3*24 | 96 x 3.1 | 48 | 8, 4.494, 4.417, ... | |
8.37 | 8 | 96 | 5 | 768 | tra | 7.1 x K2 | 2 x 7.1 | 48 | 8, 6, 4, ... |
8.38 | 8 | 96 | 5 | 3840 | tra | 7.2 x K2 | 2 x 7.2 | 48 | 8, 6, 4, ... |
8.39 | 8 | 96 | 5 | 192 | tra | 7.9 x K2 | 2 x 7.9 | 48 | 8, 6, 4, ... |
8.40 | 8 | 96 | 5 | 128 | 32+64 | 7.4 x K2 | 2 x 7.4 | 48 | 8, 6, 4, ... |
8.41 | 8 | 96 | 5 | 128 | 32+64 | 7.5 x K2 | 2 x 7.5 | 48 | 8, 6, 4, ... |
8.42 | 8 | 96 | 5 | 96 | tra | 7.6 x K2 | 2 x 7.6 | 48 | 8, 6, 4, ... |
8.43 | 8 | 96 | 5 | 144 | 24+72 | 7.8 x K2 | 2 x 7.8 | 48 | 8, 6, 4, ... |
8.44 | 8 | 96 | 5 | 192 | tra | 7.7 x K2 | 2 x 7.7 | 48 | 8, 6, 4, ... |
8.45 | 8 | 96 | 5 | 96 | tra | 7.3 x K2 | 2 x 7.3 | 48 | 8, 6, 4, ... |
8.46 | 8 | 96 | 5 | 128 | 32+64 | 16 x 4.1 6 x 4.2 | 48 | 8, 5.236, 5.236, ... | |
8.47 | 8 | 96 | 5 | 12 | 12*6+2*12 | 102 x 3.1 | 48 | 8, 4.449, 4.449, ... | |
8.48 | 8 | 96 | 5 | 24 | 8*12 | 102 x 3.1 | 46 | 8, 4.472, 4.366, ... | |
8.49 | 8 | 96 | 5 | 48 | 4*24 | 78 x 3.1 | 46 | 8, 4.472, 4.268, ... | |
8.50 | 8 | 96 | 5 | 96 | 48+48 | 126 x 3.1 | 44 | 8, 4.429, 4.429, ... | |
8.51 | 8 | 96 | 5 | 72 | 24+36+36 | 96 x 3.1 | 48 | 8, 4.415, 4.415, ... | |
8.52 | 8 | 96 | 5 | 4032 | tra | 7.10 x K2 | 2 x 7.10 | 48 | 8, 6, 3.646, ... |
8.53 | 8 | 100 | 5 | 2 | 28*1+36*2 | 5 x 4.1 | 48 | 8, 4.605, 4.584, ... | |
8.54 | 8 | 100 | 5 | 4 | 25*4 | 2 x 4.1 | 48 | 8, 4.643, 4.528, ... | |
8.55 | 8 | 100 | 5 | 2 | 22*1+39*2 | 4 x 4.1 | 48 | 8, 4.497, 4.416, ... | |
8.56 | 8 | 100 | 5 | 8 | 4*2+5*4+9*8 | 5 x 4.1 | 48 | 8, 4.590, 4.590, ... | |
8.57 | 8 | 100 | 5 | 20 | 5*20 | 145 x 3.1 | 48 | 8, 4.449, 4.427, ... | |
8.58 | 8 | 104 | 5 | 32 | 3*8+3*16+32 | 4 x 4.1 1 x 4.2 | 48 | 8, 4.962, 4.835, ... | |
8.59 | 8 | 104 | 5 | 48 | 8+4*24 | 250 x 3.1 | 48 | 8, 4.768, 4.768, ... | |
8.60 | 8 | 104 | 5 | 96 | 4+12+16+24+48 | 12 x 4.1 9 x 4.2 | 48 | 8, 4.962, 4.962, ... | |
8.61 | 8 | 104 | 5 | 1536 | 16+24+64 | 48 x 4.1 9 x 4.2 | 44 | 8, 4.576, 4.576, ... | |
8.62 | 8 | 112 | 4 | 21504 | tra | 64 x 4.1 42 x 4.2 | 50 | 8, 4, 4, ... | |
8.63 | 8 | 112 | 5 | 16 | 4*8+5*16 | 7.12 x K2 | 2 x 7.12 | 56 | 8, 6, 4.582, ... |
8.64 | 8 | 112 | 5 | 16 | 4*8+5*16 | 7.15 x K2 | 2 x 7.15 | 56 | 8, 6, 4.534, ... |
8.65 | 8 | 112 | 5 | 48 | 4+12+4*24 | 7.14 x K2 | 2 x 7.14 | 56 | 8, 6, 4.462, ... |
8.66 | 8 | 112 | 5 | 32 | 3*16+2*32 | 7.17 x K2 | 2 x 7.17 | 56 | 8, 6, 4.494, ... |
8.67 | 8 | 112 | 5 | 32 | 2*8+2*16+2*32 | 7.11 x K2 | 2 x 7.11 | 56 | 8, 6, 4.462, ... |
8.68 | 8 | 112 | 5 | 32 | 2*8+2*16+2*32 | 7.13 x K2 | 2 x 7.13 | 56 | 8, 6, 4.606, ... |
8.69 | 8 | 112 | 5 | 8 | 14*8 | 7.16 x K2 | 2 x 7.16 | 56 | 8, 6, 4.549, ... |
8.70 | 8 | 116 | 6 | 672 | 4+28+84 | 84 x 4.1 | 56 | 8, 4.690, 4.690, ... | |
8.71 | 8 | 128 | 4 | 5160960 | tra | folded 28 | 56 x 6.13 | 56 | 8, 4, 4, ... (integral) |
8.72 | 8 | 128 | 5 | 12288 | tra | 7.20 x K2 | 4 x 7.20 | 64 | 8, 6, 6, ... (integral) |
8.73 | 8 | 128 | 5 | 6144 | tra | 7.21 x K2 | 4 x 7.21 | 64 | 8, 6, 6, ... (integral) |
8.74 | 8 | 128 | 5 | 184320 | tra | 7.23 x K2 | 4 x 7.23 | 64 | 8, 6, 6, ... (integral) |
8.75 | 8 | 128 | 5 | 92160 | 64+64 | ebipd(N7.53) | 2 x 6.3 31 x 6.13 | 64 | 8, 6, 4, ... (integral) |
8.76 | 8 | 128 | 5 | 96 | 32+96 | 7.18 x K2 | 2 x 7.18 | 64 | 8, 6, 4.711, ... |
8.77 | 8 | 128 | 5 | 2304 | tra | 7.22 x K2 | 2 x 7.22 | 64 | 8, 6, 4.606, ... |
8.78 | 8 | 128 | 5 | 240 | 48+80 | 7.19 x K2 | 2 x 7.19 | 64 | 8, 6, 4.692, ... |
8.79 | 8 | 128 | 6 | 16 | 8*8+4*16 | 7.26 x K2 | 2 x 7.26 | 64 | 8, 6, 4.952, ... |
8.80 | 8 | 128 | 6 | 48 | 8+5*24 | 7.25 x K2 | 2 x 7.25 | 64 | 8, 6, 4.988, ... |
8.81 | 8 | 128 | 6 | 24 | 8+5*24 | 7.24 x K2 | 2 x 7.24 | 64 | 8, 6, 4.739, ... |
8.82 | 8 | 128 | 6 | 24 | 2*4+2*12+4*24 | 7.27 x K2 | 2 x 7.27 | 64 | 8, 6, 4.828, ... |
8.83 | 8 | 128 | 6 | 672 | 16+112 | 7.28 x K2 | 2 x 7.28 | 64 | 8, 6, 4.828, ... |
8.84 | 8 | 128 | 6 | 384 | 16+2*24+64 | 64 x 4.1 32 x 4.2 | 62 | 8, 4.899, 4.899, ... | |
8.85 | 8 | 128 | 6 | 48 | 2+6+8+16+2*48 | 64 x 4.1 8 x 4.2 | 64 | 8, 4.788, 4.752, ... | |
8.86 | 8 | 128 | 6 | 64 | 2*8+16+32+64 | 64 x 4.1 16 x 4.2 | 64 | 8, 4.899, 4.765, ... | |
8.87 | 8 | 128 | 6 | 512 | 2*16+32+64 | 64 x 4.1 24 x 4.2 | 62 | 8, 4.899, 4.899, ... | |
8.88 | 8 | 128 | 6 | 10752 | 8+56+64 | 64 x 4.1 56 x 4.2 | 58 | 8, 4.899, 4.899, ... | |
8.89 | 8 | 132 | 6 | 16 | 9*4+8*8+2*16 | 1 x 6.7 | 64 | 8, 5.212, 4.925, ... | |
8.90 | 8 | 132 | 6 | 72 | 2*12+36+72 | 6 x 5.2 | 64 | 8, 4.936, 4.936, ... | |
8.91 | 8 | 144 | 6 | 384 | 48+96 | 7.32 x K2 | 4 x 7.32 | 72 | 8, 6, 6, ... |
8.92 | 8 | 144 | 6 | 768 | 48+96 | 7.30 x K2 | 4 x 7.30 | 72 | 8, 6, 6, ... |
8.93 | 8 | 144 | 6 | 34560 | tra | 7.31 x K2 | 4 x 7.31 | 72 | 8, 6, 6, ... |
8.94 | 8 | 144 | 6 | 24192 | tra | 7.29 x K2 | 2 x 7.29 | 72 | 8, 6, 4.606, ... |
8.95 | 8 | 160 | 6 | 384 | 32+32+96 | 7.34 x K2 | 4 x 7.34 | 80 | 8, 6, 6, ... |
8.96 | 8 | 160 | 6 | 960 | tra | 7.35 x K2 | 4 x 7.35 | 80 | 8, 6, 6, ... |
8.97 | 8 | 160 | 6 | 96 | 16+48+96 | 7.33 x K2 | 2 x 7.33 | 80 | 8, 6, 5.236, ... |
8.98 | 8 | 164 | 6 | 512 | 4+2*16+2*32+64 | 9 x 6.10 | 80 | 8, 5.475, 5.475, ... | |
8.99 | 8 | 176 | 6 | 63360 | tra | 7.36 x K2 | 6 x 7.36 | 88 | 8, 6, 6, ... |
8.100 | 8 | 192 | 7 | 23040 | tra | 7.38 x K2 | 6 x 7.38 | 96 | 8, 6, 6, ... |
8.101 | 8 | 192 | 7 | 2048 | 64+128 | 7.37 x K2 | 4 x 7.37 | 96 | 8, 6, 6, ... |
8.102 | 8 | 196 | 6 | 225792 | tra | 4.1 x 4.1 | 42 x 6.12 | 96 | 8, 5.414, 5.414, ... |
8.103 | 8 | 224 | 7 | 129024 | tra | 7.39 x K2 | 8 x 7.39 | 112 | 8, 6, 6, ... |
8.104 | 8 | 256 | 8 | 10321920 | tra | 28 | 16 x 7.40 | 128 | 8, 6, 6, ... (integral) |
# | bipd # | k | v | d | |G| | orbits | graph | subgraphs | 2-rk | spectrum |
N3.1 | 3.1 | 3 | 4 | 1 | 24 | tra | K4 | 1 | 3, -1, -1, -1 | |
N4.1 | 4.2 | 4 | 8 | 2 | 48 | tra | N3.1 x K2 | 2 x N3.1 | 4 | 4, 2, ..., -2 (integral) |
N5.1 | 5.2 | 5 | 12 | 3 | 120 | tra | icosahedron | 6 | 5, 2.236, ..., -2.236 | |
N5.2 | 5.4 | 5 | 16 | 2 | 1920 | tra | folded 25 | 20 x 3.1 | 6 | 5, 1, ..., -3 (integral) |
N5.3 | 5.4 | 5 | 16 | 3 | 192 | tra | N4.1 x K2 | 4 x N4.1 | 8 | 5, 3, ..., -3 (integral) |
N5.4 | 5.4 | 5 | 16 | 3 | 96 | 8+8 | 7 x 3.1 2 x N3.1 | 8 | 5, 3, ..., -3 (integral) | |
N6.1 | 6.3 | 6 | 16 | 2 | 1152 | tra | K4 x K4 | 12 x N4.1 | 6 | 6, 2, ..., -2 (integral) |
N6.2 | 6.3 | 6 | 16 | 2 | 192 | tra | Shrikhande | 6 | 6, 2, ..., -2 (integral) | |
N6.3 | 6.8 | 6 | 20 | 3 | 60 | tra | 5 x N3.1 | 10 | 6, 2.449, ..., -3.236 | |
N6.4 | 6.7 | 6 | 20 | 3 | 24 | 4+4+12 | 1 x N3.1 | 10 | 6, 3.020, ..., -3.020 | |
N6.5 | 6.11 | 6 | 24 | 3 | 32 | 8+16 | 4 x 3.1 4 x N3.1 | 12 | 6, 3.236, ..., -4 | |
N6.6 | 6.11 | 6 | 24 | 3 | 480 | tra | folded 6.11 | 30 x 3.1 | 12 | 6, 2, ..., -4 |
N6.7 | 6.11 | 6 | 24 | 4 | 240 | tra | N5.1 x K2 | 2 x N5.1 | 12 | 6, 4, ..., -3.236 |
N6.8 | 6.12 | 6 | 28 | 3 | 48 | 4+12+12 | 2 x 4.1 3 x N4.1 | 14 | 6, 3.414, ..., -4 | |
N6.9 | 6.13 | 6 | 32 | 3 | 3840 | tra | N5.2 x K2 | 2 x N5.2 | 16 | 6, 4, ..., -4 (integral) |
N6.10 | 6.13 | 6 | 32 | 4 | 1152 | tra | N5.3 x K2 | 6 x N5.3 | 16 | 6, 4, ..., -4 (integral) |
N6.11 | 6.13 | 6 | 32 | 4 | 192 | 16+16 | N5.4 x K2 | 2 x N5.4 | 16 | 6, 4, ..., -4 (integral) |
N7.1 | 7.1 | 7 | 24 | 2 | 96 | tra | 2 x N5.1 | 12 | 7, 3, ..., -3 | |
N7.2 | 7.1 | 7 | 24 | 2 | 96 | tra | 2 x N5.1 | 10 | 7, 3, ..., -3 | |
N7.3 | 7.2 | 7 | 24 | 2 | 480 | tra | folded N7.46 | 2 x N5.1 | 12 | 7, 3, ..., -3 |
N7.4 | 7.2 | 7 | 24 | 2 | 480 | tra | 2 x N5.1 | 8 | 7, 3, ..., -3 | |
N7.5 | 7.1 | 7 | 24 | 3 | 96 | tra | 6 x N4.1 | 12 | 7, 3, ..., -3 | |
N7.6 | 7.2 | 7 | 24 | 3 | 48 | tra | 3 x 3.1 | 12 | 7, 3, ..., -3 | |
N7.7 | 7.4 | 7 | 24 | 3 | 8 | 4*4+8 | 1 x 3.1 | 12 | 7, 3, ..., -3 | |
N7.8 | 7.5 | 7 | 24 | 3 | 16 | 8+8+8 | 1 x 3.1 | 12 | 7, 3, ..., -3 | |
N7.9 | 7.6 | 7 | 24 | 3 | 4 | 6*4 | 12 | 7, 2.909, ..., -3 | ||
N7.10 | 7.8 | 7 | 24 | 3 | 12 | 4*6 | 11 | 7, 3, ..., -3 | ||
N7.11 | 7.9 | 7 | 24 | 3 | 12 | 4*6 | 3 x 3.1 | 10 | 7, 2.798, ..., -3 | |
N7.12 | 7.10 | 7 | 24 | 3 | 336 | tra | drg(7,4,1; 1,2,7) | 9 | 7, 2.646, ..., -2.646 | |
N7.13 | 7.24 | 7 | 32 | 3 | 6 | 2+5*6 | 3 x 3.1 3 x N3.1 | 14 | 7, 3.661, ..., -3.739 | |
N7.14 | 7.26 | 7 | 32 | 3 | 4 | 8*2+4*4 | 1 x 3.1 3 x N3.1 | 15 | 7, 3.839, ..., -3.952 | |
N7.15 | 7.27 | 7 | 32 | 3 | 2 | 8*1+12*2 | 3 x N3.1 | 16 | 7, 3.638, ..., -3.828 | |
N7.16 | 7.18 | 7 | 32 | 3 | 8 | 4*8 | 16 | 7, 3.711, ..., -3.711 | ||
N7.17 | 7.18 | 7 | 32 | 3 | 24 | 8+24 | 8 x N3.1 | 14 | 7, 3.606, ..., -3.711 | |
N7.18 | 7.20 | 7 | 32 | 3 | 512 | tra | 2 x N5.2 4 x N5.3 | 16 | 7, 3, ..., -5 (integral) | |
N7.19 | 7.20 | 7 | 32 | 3 | 256 | tra | 2 x N5.3 4 x N5.4 | 16 | 7, 3, ..., -5 (integral) | |
N7.20 | 7.21 | 7 | 32 | 3 | 96 | tra | 2 x 4.2 4 x N4.1 | 16 | 7, 3, ..., -5 (integral) | |
N7.21 | 7.21 | 7 | 32 | 3 | 768 | tra | 2 x N5.2 | 14 | 7, 3, ..., -5 (integral) | |
N7.22 | 7.28 | 7 | 32 | 3 | 24 | 4+4+24 | 8 x N3.1 | 16 | 7, 3.494, ..., -3.828 | |
N7.23 | 7.28 | 7 | 32 | 3 | 168 | 4+28 | 16 | 7, 3.494, ..., -3.828 | ||
N7.24 | 7.22 | 7 | 32 | 3 | 48 | 8+24 | 14 | 7, 3.606, ..., -3.606 | ||
N7.25 | 7.23 | 7 | 32 | 3 | 1536 | tra | 2 x N5.2 12 x N5.3 | 16 | 7, 3, ..., -5 (integral) | |
N7.26 | 7.23 | 7 | 32 | 3 | 256 | tra | 2 x N5.3 4 x N5.4 | 16 | 7, 3, ..., -5 (integral) | |
N7.27 | 7.23 | 7 | 32 | 3 | 2304 | tra | N6.1 x K2 | 2 x N6.1 | 16 | 7, 5, ..., -3 (integral) |
N7.28 | 7.23 | 7 | 32 | 3 | 384 | tra | N6.2 x K2 | 2 x N6.2 | 16 | 7, 5, ..., -3 (integral) |
N7.29 | 7.25 | 7 | 32 | 4 | 12 | 2+5*6 | 3 x 3.1 2 x N3.1 | 15 | 7, 3.988, ..., -3.686 | |
N7.30 | 7.28 | 7 | 32 | 4 | 56 | 4+28 | 16 | 7, 3.828, ..., -3.828 | ||
N7.31 | 7.30 | 7 | 36 | 3 | 32 | 4+2*8+16 | 25 x 3.1 5 x N3.1 | 17 | 7, 3.449, ..., -5 | |
N7.32 | 7.32 | 7 | 36 | 3 | 8 | 3*4+3*8 | 25 x 3.1 5 x N3.1 | 17 | 7, 3.732, ..., -5 | |
N7.33 | 7.34 | 7 | 40 | 4 | 48 | 8+8+24 | N6.4 x K2 | 2 x N6.4 | 20 | 7, 5, ..., -4.020 |
N7.34 | 7.34 | 7 | 40 | 4 | 16 | 3*8+16 | 1 x N4.1 | 18 | 7, 4.020, ..., -5 | |
N7.35 | 7.35 | 7 | 40 | 4 | 8 | 5*8 | 1 x N4.1 | 20 | 7, 4.236, ..., -5 | |
N7.36 | 7.35 | 7 | 40 | 4 | 120 | tra | N6.3 x K2 | 2 x N6.3 | 20 | 7, 5, ..., -4.236 |
N7.37 | 7.36 | 7 | 44 | 3 | 80 | 4+20+20 | 2 x 5.1 | 21 | 7, 3.732, ..., -5 | |
N7.38 | 7.37 | 7 | 48 | 4 | 32 | 16+16+16 | 8 x 4.1 | 24 | 7, 4.236, ..., -5 | |
N7.39 | 7.37 | 7 | 48 | 4 | 32 | 4*8+16 | 120 x 3.1 4 x N3.1 | 24 | 7, 4.464, ..., -5 | |
N7.40 | 7.37 | 7 | 48 | 4 | 128 | 16+32 | 120 x 3.1 4 x N3.1 | 22 | 7, 4.464, ..., -5 | |
N7.41 | 7.38 | 7 | 48 | 4 | 64 | 16+32 | N6.5 x K2 | 2 x N6.5 | 24 | 7, 5, ..., -5 |
N7.42 | 7.38 | 7 | 48 | 4 | 96 | 24+24 | 2 x 5.2 | 22 | 7, 4.236, ..., -5 | |
N7.43 | 7.38 | 7 | 48 | 4 | 64 | 16+16+16 | 2 x 5.2 | 24 | 7, 4.236, ..., -5 | |
N7.44 | 7.38 | 7 | 48 | 4 | 960 | tra | 2 x 5.2 | 24 | 7, 4.236, ..., -5 | |
N7.45 | 7.38 | 7 | 48 | 4 | 960 | tra | N6.6 x K2 | 2 x N6.6 | 24 | 7, 5, ..., -5 |
N7.46 | 7.38 | 7 | 48 | 5 | 960 | tra | N6.7 x K2 | 4 x N6.7 | 24 | 7, 5, ..., -4.236 |
N7.47 | 7.38 | 7 | 48 | 5 | 480 | 24+24 | 1 x 5.2 2 x N5.1 | 24 | 7, 5, ..., -5 | |
N7.48 | 7.39 | 7 | 56 | 4 | 96 | 8+24+24 | N6.8 x K2 | 2 x N6.8 | 28 | 7, 5, ..., -5 |
N7.49 | 7.39 | 7 | 56 | 4 | 8064 | tra | 4.1 x K4 | 6 x 5.3 21 x N5.3 | 26 | 7, 4.414, ..., -5 |
N7.50 | 7.39 | 7 | 56 | 4 | 384 | 8+16+32 | 6 x 5.3 1 x N5.3 4 x N5.4 | 26 | 7, 4.414, ..., -5 | |
N7.51 | 7.40 | 7 | 64 | 3 | 322560 | tra | folded 27 | 42 x 5.4 | 28 | 7, 3, ..., -5 (integral) |
N7.52 | 7.40 | 7 | 64 | 4 | 15360 | tra | N6.9 x K2 | 4 x N6.9 | 32 | 7, 5, ..., -5 (integral) |
N7.53 | 7.40 | 7 | 64 | 4 | 7680 | 32+32 | 21 x 5.4 2 x N5.2 | 32 | 7, 5, ..., -5 (integral) | |
N7.54 | 7.40 | 7 | 64 | 5 | 9216 | tra | N6.10 x K2 | 8 x N6.10 | 32 | 7, 5, ..., -5 (integral) |
N7.55 | 7.40 | 7 | 64 | 5 | 768 | 32+32 | N6.11 x K2 | 4 x N6.11 | 32 | 7, 5, ..., -5 (integral) |
N7.56 | 7.40 | 7 | 64 | 5 | 768 | 16+16+32 | 8 x 5.4 4 x N5.4 | 32 | 7, 5, ..., -5 (integral) | |
N8.1 | 8.3 | 8 | 34 | 3 | 2 | 17*2 | 1 x 3.1 | 16 | 8, 3.514, ..., -3.708 | |
N8.2 | 8.3 | 8 | 34 | 3 | 2 | 17*2 | 1 x 3.1 | 16 | 8, 3.611, ..., -3.708 | |
N8.3 | 8.4 | 8 | 34 | 3 | 10 | 2*2+3*10 | 1 x N3.1 | 16 | 8, 3.393, ..., -3.689 | |
N8.4 | 8.7 | 8 | 36 | 3 | 72 | tra | 36 x 3.1 18 x N3.1 | 16 | 8, 3.646, ..., -4 | |
N8.5 | 8.7 | 8 | 36 | 3 | 12 | 12+12+12 | 3 x 3.1 | 16 | 8, 4, ..., -4 | |
N8.6 | 8.7 | 8 | 36 | 3 | 12 | 4*6+12 | 3 x 3.1 | 16 | 8, 4, ..., -4 | |
N8.7 | 8.8 | 8 | 37 | 3 | 12 | 2*1+2+3+3*6+12 | 5 x 3.1 | 14 | 8, 3.646, ..., -3.646 | |
N8.8 | 8.8 | 8 | 37 | 3 | 336 | 1+8+28 | 56 x 3.1 14 x N3.1 | 14 | 8, 3.414, ..., -3.646 | |
N8.9 | 8.13 | 8 | 40 | 3 | 1920 | tra | folded 8.13 | 40 x 3.1 | 16 | 8, 2, ..., -4 (integral) |
N8.10 | 8.13 | 8 | 40 | 3 | 384 | 8+32 | 32 x 3.1 16 x N3.1 | 16 | 8, 4, ..., -4 (integral) | |
N8.11 | 8.11 | 8 | 40 | 3 | 10 | 4*10 | 15 x 3.1 15 x N3.1 | 18 | 8, 4.179, ..., -4.512 | |
N8.12 | 8.12 | 8 | 40 | 3 | 32 | 8+16+16 | 18 | 8, 4, ..., -4 | ||
N8.13 | 8.12 | 8 | 40 | 3 | 96 | 16+24 | 8 x 3.1 16 x N3.1 | 18 | 8, 4, ..., -4 | |
N8.14 | 8.15 | 8 | 40 | 3 | 192 | 8+32 | 4 x 3.1 8 x N3.1 | 18 | 8, 3.464, ..., -4 | |
N8.15 | 8.13 | 8 | 40 | 4 | 192 | 16+24 | 16 | 8, 4, ..., -4 (integral) | ||
N8.16 | 8.13 | 8 | 40 | 4 | 32 | 3*8+16 | 12 x 3.1 | 16 | 8, 4, ..., -4 (integral) | |
N8.17 | 8.15 | 8 | 40 | 4 | 64 | 8+32 | 18 | 8, 4, ..., -4 | ||
N8.18 | 8.24 | 8 | 42 | 3 | 8 | 2+6*4+2*8 | 16 x 3.1 8 x N3.1 | 20 | 8, 3.805, ..., -4.256 | |
N8.19 | 8.25 | 8 | 42 | 3 | 8 | 3*2+3*4+3*8 | 6 x 3.1 | 20 | 8, 4.218, ..., -4.337 | |
N8.20 | 8.25 | 8 | 42 | 3 | 8 | 3*2+3*4+3*8 | 16 x 3.1 8 x N3.1 | 20 | 8, 4.039, ..., -4.337 | |
N8.21 | 8.29 | 8 | 42 | 3 | 48 | 6+12+24 | 12 x 3.1 | 20 | 8, 4.218, ..., -4.218 | |
N8.22 | 8.29 | 8 | 42 | 3 | 16 | 2+2*4+2*8+16 | 20 x 3.1 8 x N3.1 | 20 | 8, 4.218, ..., -4.218 | |
N8.23 | 8.24 | 8 | 42 | 4 | 8 | 2+6*4+2*8 | 6 x 3.1 | 20 | 8, 4.256, ..., -4.110 | |
N8.24 | 8.25 | 8 | 42 | 4 | 8 | 3*2+3*4+3*8 | 20 | 8, 4.313, ..., -4.337 | ||
N8.25 | 8.25 | 8 | 42 | 4 | 8 | 3*2+3*4+3*8 | 4 x 3.1 4 x N3.1 | 20 | 8, 4.313, ..., -4.337 | |
N8.26 | 8.26 | 8 | 42 | 4 | 8 | 3*2+3*4+3*8 | 8 x 3.1 4 x N3.1 | 20 | 8, 4.337, ..., -4.337 | |
N8.27 | 8.26 | 8 | 42 | 4 | 32 | 2+8+2*16 | 8 x 3.1 | 20 | 8, 4.307, ..., -4.337 | |
N8.28 | 8.26 | 8 | 42 | 4 | 8 | 3*2+3*4+3*8 | 10 x 3.1 | 20 | 8, 4.337, ..., -4.337 | |
N8.29 | 8.26 | 8 | 42 | 4 | 32 | 2+8+2*16 | 32 x 3.1 8 x N3.1 | 20 | 8, 4.307, ..., -4.337 | |
N8.30 | 8.29 | 8 | 42 | 4 | 16 | 2+2*4+2*8+16 | 4 x 3.1 | 20 | 8, 4.218, ..., -4.218 | |
N8.31 | 8.29 | 8 | 42 | 4 | 48 | 6+12+24 | 20 | 8, 4.218, ..., -4.218 | ||
N8.32 | 8.31 | 8 | 44 | 3 | 4 | 6*2+8*4 | 1 x N4.1 | 20 | 8, 3.948, ..., -4.812 | |
N8.33 | 8.32 | 8 | 44 | 3 | 4 | 6*2+8*4 | 1 x N4.1 | 20 | 8, 3.871, ..., -4.946 | |
N8.34 | 8.33 | 8 | 48 | 3 | 48 | 24+24 | 2 x N5.1 | 24 | 8, 4, ..., -4 | |
N8.35 | 8.34 | 8 | 48 | 3 | 2880 | tra | folded N8.186 | 6 x N6.7 | 24 | 8, 4, ..., -5.236 |
N8.36 | 8.34 | 8 | 48 | 3 | 480 | 24+24 | 1 x N6.6 1 x N6.7 | 24 | 8, 4, ..., -5.236 | |
N8.37 | 8.34 | 8 | 48 | 3 | 960 | tra | 2 x N6.6 | 24 | 8, 4, ..., -5.236 | |
N8.38 | 8.37 | 8 | 48 | 3 | 192 | tra | N7.1 x K2 | 2 x N7.1 | 24 | 8, 6, ..., -4 |
N8.39 | 8.37 | 8 | 48 | 3 | 192 | tra | N7.2 x K2 | 2 x N7.2 | 24 | 8, 6, ..., -4 |
N8.40 | 8.37 | 8 | 48 | 3 | 32 | 16+32 | 2 x 5.2 2 x N5.3 | 24 | 8, 4, ..., -6 | |
N8.41 | 8.37 | 8 | 48 | 3 | 64 | 16+32 | 2 x 5.2 | 24 | 8, 4, ..., -6 | |
N8.42 | 8.37 | 8 | 48 | 3 | 192 | tra | 2 x 5.2 | 24 | 8, 4, ..., -6 | |
N8.43 | 8.38 | 8 | 48 | 3 | 960 | tra | N7.4 x K2 | 2 x N7.4 | 24 | 8, 6, ..., -4 |
N8.44 | 8.38 | 8 | 48 | 3 | 960 | tra | N7.3 x K2 | 2 x N7.3 | 24 | 8, 6, ..., -4 |
N8.45 | 8.38 | 8 | 48 | 3 | 96 | tra | 2 x 5.2 6 x N5.3 | 24 | 8, 4, ..., -6 | |
N8.46 | 8.38 | 8 | 48 | 3 | 64 | 16+32 | 2 x 5.2 | 24 | 8, 4, ..., -6 | |
N8.47 | 8.38 | 8 | 48 | 3 | 960 | tra | 2 x 5.2 | 24 | 8, 3.236, ..., -6 | |
N8.48 | 8.39 | 8 | 48 | 3 | 32 | 16+32 | 2 x N5.3 | 24 | 8, 4, ..., -6 | |
N8.49 | 8.39 | 8 | 48 | 3 | 96 | tra | 6 x N5.3 | 24 | 8, 4, ..., -6 | |
N8.50 | 8.40 | 8 | 48 | 3 | 16 | 2*4+8+2*16 | 2 x 4.2 2 x N4.1 | 24 | 8, 4, ..., -6 | |
N8.51 | 8.40 | 8 | 48 | 3 | 32 | 16+32 | 2 x N5.3 | 24 | 8, 4, ..., -6 | |
N8.52 | 8.41 | 8 | 48 | 3 | 16 | 2*4+8+2*16 | 3 x 4.2 | 24 | 8, 3.798, ..., -6 | |
N8.53 | 8.41 | 8 | 48 | 3 | 32 | 16+32 | 2 x N5.3 | 24 | 8, 4, ..., -6 | |
N8.54 | 8.42 | 8 | 48 | 3 | 48 | tra | 18 x N4.1 | 24 | 8, 4, ..., -6 | |
N8.55 | 8.42 | 8 | 48 | 3 | 48 | tra | 12 x N4.1 | 24 | 8, 4, ..., -6 | |
N8.56 | 8.42 | 8 | 48 | 3 | 48 | tra | 6 x N4.1 | 24 | 8, 4, ..., -6 | |
N8.57 | 8.43 | 8 | 48 | 3 | 24 | 12+12+24 | 12 x N4.1 | 24 | 8, 4, ..., -6 | |
N8.58 | 8.44 | 8 | 48 | 3 | 96 | tra | 12 x N4.1 | 24 | 8, 3.646, ..., -6 | |
N8.59 | 8.45 | 8 | 48 | 3 | 48 | tra | 18 x N4.1 | 24 | 8, 4, ..., -6 | |
N8.60 | 8.50 | 8 | 48 | 3 | 48 | 24+24 | 60 x 3.1 6 x N3.1 | 22 | 8, 4.243, ..., -4.429 | |
N8.61 | 8.52 | 8 | 48 | 3 | 96 | tra | 12 x N4.1 | 24 | 8, 3.646, ..., -6 | |
N8.62 | 8.34 | 8 | 48 | 4 | 2880 | tra | N5.1 x K4 | 6 x N6.7 | 24 | 8, 5.236, ..., -3.236 |
N8.63 | 8.34 | 8 | 48 | 4 | 64 | 16+16+16 | 2 x N6.5 | 24 | 8, 5.236, ..., -5.236 | |
N8.64 | 8.36 | 8 | 48 | 4 | 4 | 6*2+9*4 | 10 x 3.1 8 x N3.1 | 24 | 8, 4.417, ..., -4.494 | |
N8.65 | 8.36 | 8 | 48 | 4 | 12 | 2*6+3*12 | 12 x 3.1 | 24 | 8, 4.494, ..., -4.340 | |
N8.66 | 8.37 | 8 | 48 | 4 | 384 | tra | 2 x N6.6 | 24 | 8, 4, ..., -6 | |
N8.67 | 8.37 | 8 | 48 | 4 | 128 | 16+32 | 2 x N6.5 | 24 | 8, 4, ..., -6 | |
N8.68 | 8.37 | 8 | 48 | 4 | 192 | tra | N7.5 x K2 | 2 x N7.5 | 24 | 8, 6, ..., -4 |
N8.69 | 8.38 | 8 | 48 | 4 | 1920 | tra | 2 x N6.6 | 24 | 8, 4, ..., -6 | |
N8.70 | 8.38 | 8 | 48 | 4 | 128 | 16+32 | 2 x N6.5 | 24 | 8, 4, ..., -6 | |
N8.71 | 8.38 | 8 | 48 | 4 | 96 | tra | N7.6 x K2 | 2 x N7.6 | 24 | 8, 6, ..., -4 |
N8.72 | 8.39 | 8 | 48 | 4 | 24 | 4*12 | N7.11 x K2 | 2 x N7.11 | 24 | 8, 6, ..., -4 |
N8.73 | 8.40 | 8 | 48 | 4 | 16 | 4*8+16 | N7.7 x K2 | 2 x N7.7 | 24 | 8, 6, ..., -4 |
N8.74 | 8.41 | 8 | 48 | 4 | 32 | 16+16+16 | N7.8 x K2 | 2 x N7.8 | 24 | 8, 6, ..., -4 |
N8.75 | 8.42 | 8 | 48 | 4 | 8 | 6*8 | N7.9 x K2 | 2 x N7.9 | 24 | 8, 6, ..., -4 |
N8.76 | 8.43 | 8 | 48 | 4 | 24 | 4*12 | N7.10 x K2 | 2 x N7.10 | 24 | 8, 6, ..., -4 |
N8.77 | 8.50 | 8 | 48 | 4 | 16 | 4*8+16 | 13 x 3.1 | 22 | 8, 4.429, ..., -4.243 | |
N8.78 | 8.50 | 8 | 48 | 4 | 24 | 12+12+24 | 21 x 3.1 | 22 | 8, 4.429, ..., -4.429 | |
N8.79 | 8.51 | 8 | 48 | 4 | 12 | 2*6+3*12 | 24 | 8, 4.415, ..., -4.415 | ||
N8.80 | 8.51 | 8 | 48 | 4 | 12 | 6*6+12 | 6 x 3.1 | 24 | 8, 4.415, ..., -4.415 | |
N8.81 | 8.52 | 8 | 48 | 4 | 672 | tra | N7.12 x K2 | 2 x N7.12 | 24 | 8, 6, ..., -3.646 |
N8.82 | 8.58 | 8 | 52 | 4 | 8 | 3*4+5*8 | 2 x 4.1 1 x N4.1 | 24 | 8, 4.780, ..., -4.962 | |
N8.83 | 8.58 | 8 | 52 | 4 | 16 | 3*4+3*8+16 | 2 x 4.1 1 x N4.1 | 24 | 8, 4.835, ..., -4.962 | |
N8.84 | 8.58 | 8 | 52 | 4 | 16 | 3*4+3*8+16 | 2 x 4.1 1 x N4.1 | 24 | 8, 4.835, ..., -4.962 | |
N8.85 | 8.59 | 8 | 52 | 4 | 12 | 2*2+8*6 | 52 x 3.1 2 x N3.1 | 24 | 8, 4.768, ..., -4.768 | |
N8.86 | 8.59 | 8 | 52 | 4 | 8 | 5*4+4*8 | 42 x 3.1 10 x N3.1 | 24 | 8, 4.309, ..., -4.768 | |
N8.87 | 8.60 | 8 | 52 | 4 | 48 | 2+6+8+12+24 | 6 x 4.1 1 x N4.1 | 24 | 8, 4.783, ..., -4.962 | |
N8.88 | 8.60 | 8 | 52 | 4 | 16 | 2*2+2*4+3*8+16 | 6 x 4.1 1 x N4.1 | 24 | 8, 4.783, ..., -4.962 | |
N8.89 | 8.61 | 8 | 52 | 4 | 48 | 2+3*6+8+24 | 6 x 4.1 1 x N4.1 | 22 | 8, 4.576, ..., -4.576 | |
N8.90 | 8.63 | 8 | 56 | 4 | 8 | 4*4+5*8 | 1 x N4.1 | 28 | 8, 4.557, ..., -6 | |
N8.91 | 8.63 | 8 | 56 | 4 | 8 | 4*4+5*8 | 1 x N4.1 | 28 | 8, 4.462, ..., -6 | |
N8.92 | 8.66 | 8 | 56 | 4 | 16 | 3*8+2*16 | 88 x 3.1 6 x N3.1 | 28 | 8, 4.482, ..., -6 | |
N8.93 | 8.66 | 8 | 56 | 4 | 8 | 7*8 | 88 x 3.1 6 x N3.1 | 28 | 8, 4.494, ..., -6 | |
N8.94 | 8.67 | 8 | 56 | 4 | 16 | 2*4+2*8+2*16 | 1 x N4.1 | 28 | 8, 4.462, ..., -6 | |
N8.95 | 8.68 | 8 | 56 | 4 | 16 | 2*4+2*8+2*16 | 1 x N4.1 | 28 | 8, 4.462, ..., -6 | |
N8.96 | 8.69 | 8 | 56 | 4 | 4 | 14*4 | 1 x N4.1 | 28 | 8, 4.356, ..., -6 | |
N8.97 | 8.71 | 8 | 64 | 3 | 46080 | tra | N5.2 x K4 | 6 x N6.9 20 x N6.10 | 28 | 8, 4, ..., -4 (integral) |
N8.98 | 8.71 | 8 | 64 | 3 | 4608 | tra | 2 x N6.10 12 x N6.11 | 28 | 8, 4, ..., -4 (integral) | |
N8.99 | 8.72 | 8 | 64 | 3 | 256 | 16+16+32 | 2 x 6.1 2 x N6.10 2 x N6.11 | 32 | 8, 4, ..., -6 (integral) | |
N8.100 | 8.72 | 8 | 64 | 3 | 128 | 16+16+32 | 2 x 6.1 | 32 | 8, 4, ..., -6 (integral) | |
N8.101 | 8.72 | 8 | 64 | 3 | 256 | 16+16+32 | 2 x 6.1 2 x N6.9 2 x N6.11 | 32 | 8, 4, ..., -6 (integral) | |
N8.102 | 8.73 | 8 | 64 | 3 | 128 | 32+32 | 2 x 6.2 | 32 | 8, 4, ..., -6 (integral) | |
N8.103 | 8.73 | 8 | 64 | 3 | 64 | 4*16 | 2 x 6.2 2 x N6.11 | 32 | 8, 4, ..., -6 (integral) | |
N8.104 | 8.74 | 8 | 64 | 3 | 512 | 32+32 | 2 x 6.3 4 x N6.11 | 32 | 8, 4, ..., -6 (integral) | |
N8.105 | 8.74 | 8 | 64 | 3 | 15360 | tra | 2 x 6.3 20 x N6.10 | 32 | 8, 4, ..., -6 (integral) | |
N8.106 | 8.74 | 8 | 64 | 3 | 768 | 32+32 | 2 x 6.3 1 x N6.9 1 x N6.10 6 x N6.11 | 32 | 8, 4, ..., -6 (integral) | |
N8.107 | 8.74 | 8 | 64 | 3 | 1536 | tra | 2 x 6.3 | 32 | 8, 4, ..., -6 (integral) | |
N8.108 | 8.74 | 8 | 64 | 3 | 9216 | tra | 2 x 6.3 12 x N6.9 | 32 | 8, 4, ..., -6 (integral) | |
N8.109 | 8.75 | 8 | 64 | 3 | 7680 | 32+32 | 1 x 6.3 1 x N6.9 20 x N6.10 | 32 | 8, 4, ..., -6 (integral) | |
N8.110 | 8.75 | 8 | 64 | 3 | 384 | 4*16 | 1 x 6.3 1 x N6.10 8 x N6.11 | 32 | 8, 4, ..., -6 (integral) | |
N8.111 | 8.75 | 8 | 64 | 3 | 2304 | 32+32 | 1 x 6.3 6 x N6.9 1 x N6.10 6 x N6.11 | 32 | 8, 4, ..., -6 (integral) | |
N8.112 | 8.77 | 8 | 64 | 3 | 1152 | tra | 8 x N5.2 | 32 | 8, 4, ..., -6 | |
N8.113 | 8.72 | 8 | 64 | 4 | 1024 | tra | N7.18 x K2 | 2 x N7.18 | 32 | 8, 6, ..., -6 (integral) |
N8.114 | 8.72 | 8 | 64 | 4 | 512 | tra | N7.19 x K2 | 2 x N7.19 | 32 | 8, 6, ..., -6 (integral) |
N8.115 | 8.73 | 8 | 64 | 4 | 1536 | tra | N7.21 x K2 | 2 x N7.21 | 32 | 8, 6, ..., -6 (integral) |
N8.116 | 8.73 | 8 | 64 | 4 | 192 | tra | N7.20 x K2 | 2 x N7.20 | 32 | 8, 6, ..., -6 (integral) |
N8.117 | 8.74 | 8 | 64 | 4 | 1536 | tra | N7.28 x K2 | 4 x N7.28 | 32 | 8, 6, ..., -4 (integral) |
N8.118 | 8.74 | 8 | 64 | 4 | 9216 | tra | N7.27 x K2 | 4 x N7.27 | 32 | 8, 6, ..., -4 (integral) |
N8.119 | 8.74 | 8 | 64 | 4 | 768 | 32+32 | 1 x 6.3 2 x N6.2 | 32 | 8, 6, ..., -6 (integral) | |
N8.120 | 8.74 | 8 | 64 | 4 | 4608 | 32+32 | 1 x 6.3 2 x N6.1 12 x N6.11 | 32 | 8, 6, ..., -6 (integral) | |
N8.121 | 8.74 | 8 | 64 | 4 | 3072 | tra | N7.25 x K2 | 2 x N7.25 | 32 | 8, 6, ..., -6 (integral) |
N8.122 | 8.74 | 8 | 64 | 4 | 512 | tra | N7.26 x K2 | 2 x N7.26 | 32 | 8, 6, ..., -6 (integral) |
N8.123 | 8.75 | 8 | 64 | 4 | 2304 | 32+32 | N5.4 x K4 | 2 x N6.1 7 x N6.10 6 x N6.11 | 32 | 8, 6, ..., -4 (integral) |
N8.124 | 8.76 | 8 | 64 | 4 | 16 | 4*16 | N7.16 x K2 | 2 x N7.16 | 32 | 8, 6, ..., -4.711 |
N8.125 | 8.76 | 8 | 64 | 4 | 16 | 4*16 | 124 x 3.1 8 x N3.1 | 32 | 8, 4.711, ..., -6 | |
N8.126 | 8.76 | 8 | 64 | 4 | 48 | 16+48 | N7.17 x K2 | 2 x N7.17 | 32 | 8, 6, ..., -4.711 |
N8.127 | 8.76 | 8 | 64 | 4 | 16 | 4*16 | 140 x 3.1 8 x N3.1 | 32 | 8, 4.711, ..., -6 | |
N8.128 | 8.76 | 8 | 64 | 4 | 48 | 16+48 | 224 x 3.1 | 32 | 8, 4.494, ..., -6 | |
N8.129 | 8.77 | 8 | 64 | 4 | 96 | 16+48 | N7.24 x K2 | 2 x N7.24 | 32 | 8, 6, ..., -4.606 |
N8.130 | 8.77 | 8 | 64 | 4 | 64 | 32+32 | 8 x 4.2 | 32 | 8, 4.606, ..., -6 | |
N8.131 | 8.77 | 8 | 64 | 4 | 96 | 16+48 | 232 x 3.1 | 32 | 8, 4.606, ..., -6 | |
N8.132 | 8.78 | 8 | 64 | 4 | 8 | 8*8 | 3 x N4.1 | 32 | 8, 4.692, ..., -6 | |
N8.133 | 8.79 | 8 | 64 | 4 | 8 | 8*4+4*8 | N7.14 x K2 | 2 x N7.14 | 32 | 8, 6, ..., -4.952 |
N8.134 | 8.79 | 8 | 64 | 4 | 8 | 8*4+4*8 | 1 x 4.2 1 x N4.1 | 32 | 8, 4.839, ..., -6 | |
N8.135 | 8.80 | 8 | 64 | 4 | 8 | 8*4+4*8 | 1 x 4.2 | 32 | 8, 4.988, ..., -6 | |
N8.136 | 8.81 | 8 | 64 | 4 | 4 | 16*4 | 2 x 4.1 1 x 4.2 1 x N4.1 | 32 | 8, 4.684, ..., -6 | |
N8.137 | 8.81 | 8 | 64 | 4 | 12 | 4+5*12 | N7.13 x K2 | 2 x N7.13 | 32 | 8, 6, ..., -4.739 |
N8.138 | 8.82 | 8 | 64 | 4 | 4 | 8*2+12*4 | N7.15 x K2 | 2 x N7.15 | 32 | 8, 6, ..., -4.828 |
N8.139 | 8.83 | 8 | 64 | 4 | 16 | 2*8+3*16 | 124 x 3.1 8 x N3.1 | 32 | 8, 4.828, ..., -6 | |
N8.140 | 8.83 | 8 | 64 | 4 | 112 | 8+56 | 224 x 3.1 | 32 | 8, 4.828, ..., -6 | |
N8.141 | 8.83 | 8 | 64 | 4 | 336 | 8+56 | N7.23 x K2 | 2 x N7.23 | 32 | 8, 6, ..., -4.828 |
N8.142 | 8.83 | 8 | 64 | 4 | 48 | 8+8+48 | N7.22 x K2 | 2 x N7.22 | 32 | 8, 6, ..., -4.828 |
N8.143 | 8.80 | 8 | 64 | 5 | 24 | 4+5*12 | N7.29 x K2 | 2 x N7.29 | 32 | 8, 6, ..., -4.686 |
N8.144 | 8.83 | 8 | 64 | 5 | 112 | 8+56 | N7.30 x K2 | 2 x N7.30 | 32 | 8, 6, ..., -4.828 |
N8.145 | 8.91 | 8 | 72 | 4 | 16 | 3*8+3*16 | N7.32 x K2 | 2 x N7.32 | 36 | 8, 6, ..., -6 |
N8.146 | 8.91 | 8 | 72 | 4 | 32 | 2*4+4*8+2*16 | 2 x 6.6 | 36 | 8, 4.828, ..., -6 | |
N8.147 | 8.91 | 8 | 72 | 4 | 32 | 3*8+3*16 | 2 x 6.6 | 36 | 8, 4.828, ..., -6 | |
N8.148 | 8.91 | 8 | 72 | 4 | 192 | 24+48 | 2 x 6.6 | 36 | 8, 4.828, ..., -6 | |
N8.149 | 8.91 | 8 | 72 | 4 | 192 | 24+48 | 2 x 6.6 | 36 | 8, 4.828, ..., -6 | |
N8.150 | 8.92 | 8 | 72 | 4 | 64 | 8+2*16+32 | N7.31 x K2 | 2 x N7.31 | 36 | 8, 6, ..., -6 |
N8.151 | 8.92 | 8 | 72 | 4 | 32 | 5*8+2*16 | 2 x 6.4 | 36 | 8, 4.828, ..., -6 | |
N8.152 | 8.92 | 8 | 72 | 4 | 96 | 24+24+24 | 2 x 6.4 | 36 | 8, 4.828, ..., -6 | |
N8.153 | 8.93 | 8 | 72 | 4 | 160 | 4+8+20+40 | 2 x 6.5 | 36 | 8, 4.449, ..., -6 | |
N8.154 | 8.95 | 8 | 80 | 4 | 32 | 6*8+2*16 | 2 x 6.7 | 40 | 8, 5.020, ..., -6 | |
N8.155 | 8.95 | 8 | 80 | 4 | 192 | 16+16+48 | 2 x 6.7 | 40 | 8, 5.020, ..., -6 | |
N8.156 | 8.95 | 8 | 80 | 4 | 64 | 3*16+32 | 2 x 6.7 | 40 | 8, 5.020, ..., -6 | |
N8.157 | 8.96 | 8 | 80 | 4 | 32 | 5*16 | 2 x 6.8 | 40 | 8, 5.236, ..., -6 | |
N8.158 | 8.96 | 8 | 80 | 4 | 480 | tra | 2 x 6.8 | 40 | 8, 4.449, ..., -6 | |
N8.159 | 8.97 | 8 | 80 | 4 | 16 | 4*8+3*16 | 1 x N6.5 | 40 | 8, 5.236, ..., -6 | |
N8.160 | 8.97 | 8 | 80 | 4 | 16 | 4*8+3*16 | 1 x N6.5 | 40 | 8, 5.236, ..., -6 | |
N8.161 | 8.95 | 8 | 80 | 5 | 192 | 16+16+48 | N7.33 x K2 | 4 x N7.33 | 40 | 8, 6, ..., -5.020 |
N8.162 | 8.95 | 8 | 80 | 5 | 96 | 4*8+2*24 | 1 x 6.7 2 x N6.4 | 40 | 8, 6, ..., -6 | |
N8.163 | 8.95 | 8 | 80 | 5 | 32 | 3*16+32 | N7.34 x K2 | 2 x N7.34 | 40 | 8, 6, ..., -6 |
N8.164 | 8.96 | 8 | 80 | 5 | 16 | 5*16 | N7.35 x K2 | 2 x N7.35 | 40 | 8, 6, ..., -6 |
N8.165 | 8.96 | 8 | 80 | 5 | 480 | tra | N7.36 x K2 | 4 x N7.36 | 40 | 8, 6, ..., -5.236 |
N8.166 | 8.96 | 8 | 80 | 5 | 240 | 40+40 | 1 x 6.8 2 x N6.3 | 40 | 8, 6, ..., -6 | |
N8.167 | 8.99 | 8 | 88 | 4 | 160 | 8+40+40 | N7.37 x K2 | 2 x N7.37 | 44 | 8, 6, ..., -6 |
N8.168 | 8.99 | 8 | 88 | 4 | 31680 | tra | 5.1 x K4 | 6 x 6.9 | 44 | 8, 4.732, ..., -6 |
N8.169 | 8.99 | 8 | 88 | 4 | 576 | 16+24+48 | 6 x 6.9 | 44 | 8, 4.732, ..., -6 | |
N8.170 | 8.100 | 8 | 96 | 4 | 768 | 32+64 | 6 x 6.11 | 48 | 8, 5.236, ..., -6 | |
N8.171 | 8.100 | 8 | 96 | 4 | 11520 | tra | folded 8.100 | 6 x 6.11 | 48 | 8, 4, ..., -6 |
N8.172 | 8.100 | 8 | 96 | 5 | 256 | 32+64 | N7.41 x K2 | 4 x N7.41 | 48 | 8, 6, ..., -6 |
N8.173 | 8.100 | 8 | 96 | 5 | 128 | 2*16+2*32 | 1 x 6.11 2 x N6.5 | 48 | 8, 6, ..., -6 | |
N8.174 | 8.100 | 8 | 96 | 5 | 192 | 48+48 | N7.42 x K2 | 2 x N7.42 | 48 | 8, 6, ..., -6 |
N8.175 | 8.100 | 8 | 96 | 5 | 128 | 32+32+32 | N7.43 x K2 | 2 x N7.43 | 48 | 8, 6, ..., -6 |
N8.176 | 8.100 | 8 | 96 | 5 | 11520 | tra | 5.2 x K4 | 6 x 6.11 | 48 | 8, 5.236, ..., -6 |
N8.177 | 8.100 | 8 | 96 | 5 | 768 | 32+64 | 6 x 6.11 | 48 | 8, 5.236, ..., -6 | |
N8.178 | 8.100 | 8 | 96 | 5 | 3840 | tra | N7.45 x K2 | 4 x N7.45 | 48 | 8, 6, ..., -6 |
N8.179 | 8.100 | 8 | 96 | 5 | 1920 | 48+48 | 1 x 6.11 2 x N6.6 | 48 | 8, 6, ..., -6 | |
N8.180 | 8.100 | 8 | 96 | 5 | 1920 | tra | N7.44 x K2 | 2 x N7.44 | 48 | 8, 6, ..., -6 |
N8.181 | 8.101 | 8 | 96 | 5 | 128 | 2*8+16+2*32 | 2 x 6.10 4 x N6.8 | 48 | 8, 5.464, ..., -6 | |
N8.182 | 8.101 | 8 | 96 | 5 | 64 | 4*8+2*16+32 | 2 x 6.10 2 x N6.8 | 48 | 8, 5.464, ..., -6 | |
N8.183 | 8.101 | 8 | 96 | 5 | 64 | 32+32+32 | N7.38 x K2 | 2 x N7.38 | 48 | 8, 6, ..., -6 |
N8.184 | 8.101 | 8 | 96 | 5 | 64 | 4*16+32 | N7.39 x K2 | 2 x N7.39 | 48 | 8, 6, ..., -6 |
N8.185 | 8.101 | 8 | 96 | 5 | 256 | 32+64 | N7.40 x K2 | 2 x N7.40 | 48 | 8, 6, ..., -6 |
N8.186 | 8.100 | 8 | 96 | 6 | 5760 | tra | N7.46 x K2 | 6 x N7.46 | 48 | 8, 6, ..., -5.236 |
N8.187 | 8.100 | 8 | 96 | 6 | 960 | 48+48 | N7.47 x K2 | 2 x N7.47 | 48 | 8, 6, ..., -6 |
N8.188 | 8.103 | 8 | 112 | 4 | 2304 | 16+48+48 | 12 x 6.12 3 x N6.9 | 56 | 8, 5.414, ..., -6 | |
N8.189 | 8.103 | 8 | 112 | 5 | 384 | 16+48+48 | N7.48 x K2 | 4 x N7.48 | 56 | 8, 6, ..., -6 |
N8.190 | 8.103 | 8 | 112 | 5 | 192 | 2*8+4*24 | 3 x 6.12 2 x N6.8 3 x N6.11 | 56 | 8, 6, ..., -6 | |
N8.191 | 8.103 | 8 | 112 | 5 | 16128 | tra | N7.49 x K2 | 2 x N7.49 | 56 | 8, 6, ..., -6 |
N8.192 | 8.103 | 8 | 112 | 5 | 768 | 16+32+64 | N7.50 x K2 | 2 x N7.50 | 56 | 8, 6, ..., -6 |
N8.193 | 8.104 | 8 | 128 | 4 | 645120 | tra | N7.51 x K2 | 2 x N7.51 | 64 | 8, 6, ..., -6 (integral) |
N8.194 | 8.104 | 8 | 128 | 5 | 92160 | tra | N7.52 x K2 | 6 x N7.52 | 64 | 8, 6, ..., -6 (integral) |
N8.195 | 8.104 | 8 | 128 | 5 | 15360 | 64+64 | N7.53 x K2 | 2 x N7.53 | 64 | 8, 6, ..., -6 (integral) |
N8.196 | 8.104 | 8 | 128 | 6 | 92160 | tra | N7.54 x K2 | 10 x N7.54 | 64 | 8, 6, ..., -6 (integral) |
N8.197 | 8.104 | 8 | 128 | 6 | 4608 | 64+64 | N7.55 x K2 | 6 x N7.55 | 64 | 8, 6, ..., -6 (integral) |
N8.198 | 8.104 | 8 | 128 | 6 | 1536 | 32+32+64 | N7.56 x K2 | 2 x N7.56 | 64 | 8, 6, ..., -6 (integral) |
A. E. Brouwer & P. R. J. Östergård, Classification of the (0,2)-graphs of valency 8, preprint. DVI