These parameter sets are related: a strongly regular graph with parameters (26,10,3,4) is member of the switching class of a regular two-graph, and if one isolates a point by switching, and deletes it, the result is a strongly regular graph with parameters (25,12,5,6). Among these graphs are the Latin square graphs of order 5 on 25 vertices, and the complements of the block graphs of the two Steiner triple systems STS(13) on 26 vertices.
The only one among the graphs on 25 vertices with a transitive group is Paley(25). None of the graphs on 26 vertices has a transitive group.
name | group size | children |
---|---|---|
A | 6 | 16,26,33,43,53,63,7,8 |
B | 72 | 912,1012,11,12 |
C | 39 | 1313,1413 |
D | 15600 | 1526 |
Here the 26 children of a regular two-graph on 26 vertices are the serial numbers of the conference graphs on 25 vertices obtained by switching a point isolated.
name | group size | two-graph | complement | max cliques | comments |
---|---|---|---|---|---|
P25.01 | 1 | A | P25.02 | 37,474,53 | |
P25.02 | 1 | A | P25.01 | 35,474,53 | |
P25.03 | 2 | A | P25.04 | 38,472,53 | |
P25.04 | 2 | A | P25.03 | 38,472,53 | |
P25.05 | 2 | A | P25.06 | 34,474,53 | |
P25.06 | 2 | A | P25.05 | 38,474,53 | |
P25.07 | 6 | A | P25.08 | 314,468,53 | |
P25.08 | 6 | A | P25.07 | 314,468,53 | |
P25.09 | 6 | B | P25.10 | 354,458,53 | |
P25.10 | 6 | B | P25.09 | 354,458,53 | |
P25.11 | 72 | B | P25.12 | 336,464,53 | |
P25.12 | 72 | B | P25.11 | 384,44,515 | LS(5) |
P25.13 | 3 | C | P25.14 | 33,475,53 | |
P25.14 | 3 | C | P25.13 | 31,475,53 | |
P25.15 | 600 | D | P25.15 | 3100,515 | Paley(25) |
There are two main classes of Latin squares of order 5. One gives Paley(25), the other is labeled here with LS(5).
name | group size | two-graph | max cliques | max cocliques | comments |
---|---|---|---|---|---|
P26.01 | 1 | A | 3130 | 4115,576,61 | |
P26.02 | 2 | A | 3130 | 4116,576,61 | |
P26.03 | 2 | A | 3122,42 | 4100,581,61 | |
P26.04 | 6 | A | 3122,42 | 4104,581,61 | |
P26.05 | 6 | A | 398,48 | 4164,524,613 | STS(13) |
P26.06 | 4 | B | 390,410 | 4136,570,63 | |
P26.07 | 6 | B | 382,412 | 4124,575,63 | |
P26.08 | 3 | C | 3126,41 | 495,581,61 | |
P26.09 | 39 | C | 378,413 | 4104,539,613 | STS(13) |
P26.10 | 120 | D | 390,410 | 4210,512,613 |
References:
A. J. L. Paulus, Conference matrices and graphs of order 26, Technische Hogeschool Eindhoven, report WSK 73/06, Eindhoven, 1973, 89 pp.
M. Z. Rozenfeld, The construction and properties of certain classes of strongly regular graphs, Uspehi Mat. Nauk 28 (1973) 197-198.
See also Ted Spence's page and the Notebook on Wolfram's page.